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Abstract 

This report describes the development of the metrics for assessing model 
predictive performance component of the Mississippi River Hydrodynamic 
and Delta Management Study (MRHDM).  Hydrodynamic models will be 
used for both components of the MRHDM study to provide an evaluation 
of the current conditions and future conditions under various environ-
mental scenarios that capture plausible variations in conditions such as 
sea-level rise and subsidence, and assess the impact of implementing res-
toration strategies.  There are uncertainties inherently associated with the-
se numerical predictive models.  As such, the intent of this report is to 
describe an uncertainty analysis approach to evaluate the confidence level 
in the models’ predicting ability.  The outcome and benefit of the proposed 
uncertainty analysis is to inform decision makers on how model uncertain-
ties affect the assessment and feasibility of proposed restoration and pro-
tection strategies.   
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1 Background of the Study  

The Louisiana Coastal Area, Louisiana Ecosystem Restoration Study was 
recommended to Congress by a Chief of Engineers report dated January 
31, 2005, that called for a coordinated, feasible solution to the identified 
critical water resource problems and opportunities in coastal Louisiana.  
The MRHDM Study focuses on the use and applications of tools that can 
evaluate both the existing conditions of the Mississippi River and any po-
tential local and system-wide impacts of proposed changes to the system, 
such as large scale river diversions.  The Mississippi River hydrodynamic 
component of the feasibility study focuses on impacts to the Mississippi 
River.  This component will: (1) evaluate the Mississippi River system from 
old River Control Structure to the Gulf of Mexico, (2) develop a compre-
hensive numerical modeling system to assess potential restoration alterna-
tives, and (3) determine the availability of fresh water, sediment, and 
nutrients for restoration usage without compromising flood control and 
navigation missions.  The Mississippi River Delta Management component 
focuses on impacts to the receiving areas. 

Hydrodynamic models will be used for both components of the MRHDM 
study to provide an evaluation of the current conditions, future conditions 
under various environmental scenarios that capture plausible variations in 
conditions such as sea-level rise and subsidence, and assess the impact of 
implementing restoration strategies.  There are uncertainties inherently 
associated with these numerical predictive models.  As such, the intent of 
this report is to: 

• Provide a clear definition and distinction between terminologies 
such as model calibration, validation, sensitivity analysis, perfor-
mance metrics, and uncertainty analysis; 

• Provide a framework of these various components including model 
setup, calibration/validation, sensitivity analysis, and uncertainty 
analysis, of the overall modeling effort; 

• Design an approach to quantify the models’ uncertainties; 
• Discuss guidelines to evaluate the ability of these predictive models 

to support and inform decision making regarding proposed coastal 
restoration and protection strategies.  
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2 Purpose 

This report describes the development of the Metrics for Assessing Model 
Predictive Performance component of the Mississippi River Hydrodynam-
ic and Delta Management Study (MRHDM).  This assessment ensures 
transparency in the models’ performance evaluation.  It also provides ob-
jective quantifiable measures for evaluating the models’ performance to 
minimize subjectivity in the performance assessment.  Further, this report 
outlines an uncertainty analysis approach to evaluate the confidence level 
in the models’ predicting ability and how these modeling tools can support 
and inform decisions regarding restoration strategies. 

This is a critical component of the overall MRHDM Study as it provides 
uncertainty bounds on the models’ results, allowing disclosure of 
risks―and associated assumptions―and uncertainties related to model 
performance, thus facilitating the decision-making process.  An external 
review panel will provide an independent opinion on the models’ perfor-
mance and utility based on the metrics and uncertainty analysis developed 
through this task.  Further, the assessment of the models’ performance will 
provide valuable feedback on areas of potential improvements needed to 
achieve the study’s objectives.  Additionally, this analysis will provide a 
baseline with which to evaluate performance improvements made through 
the field measurements collected through the broader MRHDM effort. 

The performance metrics developed herein will help establish credibility of 
the models while also helping set realistic expectations regarding model 
outputs, when considering the complexity of the Lower Mississippi River 
and deltaic system, and the limitations of numerical modeling tools in 
general.  The model performance assessment procedure presented here 
should supplement (and not replace) other guiding standard documents 
such as the American Association of Civil Engineers (ASCE) Manual 110 
(2008). 

It should be emphasized that data used to evaluate the model performance 
also include uncertainty.  Uncertainty in field observations directly affects 
the model input and output information.  As such, the performance met-
rics presented here should not be viewed as pass/fail criteria.  Rather, it 



Models Performance Assessment Metrics and Uncertainty Analysis 3 

should be used to gain insights into the models’ performance and the level 
of confidence the models’ predictions should be viewed  
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3 Approach  

The process of setting up and using numerical models involves several 
steps and phases (Habib, 2012, Kleindrfer et al., 1998, Lall et al., 2002, 
and Oreskes et al., 1994).  Currently, there is no universal consensus on 
the terminology of each step or phase of such a process.  Therefore, this 
report proposes a convention to be used among the various modeling and 
analysis teams within the MRHDM study.  Figure 1 provides an overall 
outline of a possible version of a numerical modeling process.  It also 
shows the sequence and transfer of information from one step to another. 

 

Figure 1.  Sequence and transfer of information among the various components of a 
numerical modeling effort. 

 

Figure 1 assumes that the models used have already been verified to com-
ply with the standard governing flow equations (e.g. mass conservation).  
This step is typically performed for newly developed models.  For this 
study, only mature and widely accepted models are being utilized.  As such 
it is assumed that these models conform to the standards.  Further, a com-
prehensive description of each of the steps is beyond the scope of this re-
port.  Thus, only a brief overview of each component is provided here.  
Typically, the first step of a modeling effort―after gathering the necessary 
data for key model parameters―is to set up the model.  That entails defin-
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ing the model’s spatial extent (often referred to as the model domain), se-
lecting the type and location of the model boundaries as defined by the ar-
ea of interest, and designing a computational grid.  The spatial resolution 
(or spacing between computational points or sections) is selected to cap-
ture the variations in the bathymetry and topography, and to provide suf-
ficient information at critical locations among other factors.  The model 
boundary conditions are typically defined based on field observations.  
Once the model setup is complete, a sensitivity analysis should be con-
ducted (Step 2).  The modeling teams would identify a list of parameters 
perceived to be important but whose precise value is not known.  Numeri-
cal simulations would be conducted as part of the sensitivity analysis while 
varying the values of each of the parameters identified by the modeling 
teams.  The range of variation for each parameter is established from pub-
lished literature and is to be within accepted physical limits.  Through the-
se numerical simulations, key model parameters that have a strong 
influence or impact on the model output should be identified.  Although it 
is not the focus of this report, it is worth noting that sensitivity analysis is 
also used to examine the adequacy of spatial resolution of the computa-
tional grid designed during the model setup phase.  The goal is to ensure 
that the model results are no dependent on the spatial resolution.  This 
sometimes is referred to as “grid independence analysis.”  

The key model parameters identified through the sensitivity analysis 
should be the focus of Step 3, the calibration effort.  These key model pa-
rameters are fine-tuned until the model output compares well to 
field/laboratory observations (Hammons & Shelden, 2012).  During cali-
bration, parameters are adjusted to meet a desired response.  The model 
calibration process is discussed later in this report.  Through the calibra-
tion process, a base value is established for each key parameter identified 
in the sensitivity analysis phase.  Once this base value is established, no 
further changes to the key model parameters are permitted.  In Step 
4―and using these base values―additional model simulations are to be 
performed under different conditions, or time periods, than those used in 
the model calibration phase.  This is called model validation.  Validation 
differs from calibration in that parameters are no longer adjusted to opti-
mize the fit, and that the observed data are independent of the data used 
during calibration.  This process provides circumstantial evidence of ac-
ceptable model performance (ASCE Manual 110).  Both graphical and sta-
tistical metrics can be used to assess the model performance and how well 
it replicates the natural system being modeled.  Full details about the per-
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formance metrics recommended for MRHDM are described later in this 
report.  Based on the models’ performance established through the met-
rics, they can be declared to be calibrated and validated. 

The list of key model parameters and the base value and range assigned to 
each of these are necessary to perform the uncertainty analysis for Step 5.  
The uncertainty analysis presented here should be performed using the 
calibrated and validated models.  A full section devoted to defining and 
discussing uncertainty analysis is provided later in this report.  In brief, 
the goals of the uncertainty analysis are to: 

• Establish the confidence bounds in the numerical models predic-
tions and assess the model’s ability to discern the impacts of resto-
ration projects; 

• Identify areas or elements of weakness and high uncertainties in the 
models that mask the model predictions and limit their use; 

• Provide insights and recommendations to reduce such uncertain-
ties.  These recommendations can be incorporated in the design of 
future data collection programs, laboratory experiments, and other 
research activities.  Improving the knowledge of key model parame-
ters is one the most effective mechanisms to reduce model uncer-
tainties. 

Before introducing the details of establishing the performance metrics and 
the uncertainty analysis, the general philosophy and terminology of mod-
eling assessment strategies are discussed below. 
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4 Philosophy 

There has been an ongoing debate between scientists and modelers re-
garding the nature and legitimacy of numerical model validation.  This de-
bate comprises (1) a philosophical debate, which calls into question 
whether or not model validation is even possible; (2) a terminology debate, 
which attempts to redefine the intent of validation; and (3) a predictability 
debate, which questions whether or not a model can be used for forecast-
ing purposes.  The intent of this overview is not to expand on or even 
summarize these debates.  Rather, it will highlight key schools of thought 
and discussions and then present a brief summary.  This section also in-
cludes additional definitions for sensitivity analysis, calibration, and un-
certainty analysis, which are sometimes misused or misunderstood. 

Konikow and Bredehoeft (1992) suggest that the concept of model valida-
tion must be viewed in a philosophical context, and argue that there are 
two primary schools of philosophical thought for model validation.  The 
first states that theories or hypotheses can be proved right or wrong on the 
basis of experimentation.  This philosophy suggests that it is possible to 
validate or invalidate a model.  The second school of thought suggests that 
theories or hypotheses in science can only be proved wrong through exper-
imentation (Oreskes, 1998; Konikow & Bredehoeft, 1992; Kleindorfer et 
al., 1998).  In terms of model validation, this philosophy suggests that val-
idation is never possible because there may always be another set of cir-
cumstances that disprove the model’s conceptual theories (Oreskes, 1998; 
Konikow & Bredehoeft, 1992).  Additionally, it has been argued that to say 
a model is validated is to claim that the model contains certain truths.  As 
such, model validation is considered impossible (Rykiel, 1996).  However, 
Rykiel (1996) points out that scientific truth is relative to the knowledge of 
the modeler at the time the model was created. 

4.1 Terminology 

Most scientists and modelers that believe validation is not possible tend to 
refer their audience to the common-use dictionary definitions of the word 
valid, i.e., being true or logically correct.  Therefore, stating that a model is 
validated means to them that the model is authenticated or legitimized 
(Oreskes, 1998; Konikow & Bredehoeft, 1992).  Consequently, their argu-
ment is that models cannot be valid because there are always uncertainties 
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or flaws in the conceptual or mechanical design of the models (Oreskes, 
1998).  Oreskes suggests that excessive positive language surrounds model 
validation and proposes that scientists and modelers should use neutral 
terms such as evaluate to allow for both positive and negative results 
(Oreskes, 1998; Oreskes et al., 1994).  Other attempts to avoid using the 
term valid when referring to models are to use synonyms such as verify, 
confirm, or corroborate (Rykiel, 1996; Oreskes et al., 1994).  The result of 
applying these terms is a reduction in the public’s confidence in the model, 
or not to claim more accuracy than is possible to achieve.  However, as 
Rykiel (1996) points out, all these terms mean the same thing.  Opposed to 
using repetitive synonyms, Rykiel (1996) suggests changing the meanings 
or semantics of the words truth and valid to better fit the modeling world.  
For example, Rykiel (1996) redefines the Merriam-Webster definition of 
truth, i.e., the quality or property of being in accord with fact or reality, 
and translates it into a modeling definition “consistent with available da-
ta.”  Other examples are provided, but the overall concept of changing the 
meanings is the same.   

An important concept for the public, policy makers, modelers, and scien-
tists to understand is that “one cannot determine the meaning of a tech-
nical term simply by inquiring about its common meaning or less, its 
etymology” (Roache, 2009).  Similar to Rykiel’s concept of amending the 
common-use definitions to fit the modeling world, Roache (2009) suggests 
that verify and validate are technical terms and therefore should be de-
fined in a technical context.  This logic seems reasonable and as such will 
be adopted here for the MRHDM study.  The technical definitions of veri-
fication and validation as specified by ASCE (Roache, 2009) will be adopt-
ed here.  Verification is defined as “solving the equations right” (Roach, 
2009).  This means modelers have a duty to test that equations are coded 
correctly and that correct results are achieved.  Verification is achieved by 
performing hand calculations, debugging the code, performing dye tests, 
or modeling simplified systems with known analytical solutions.  Valida-
tion is defined as “solving the right equations” (Roache, 2009).  This 
means that modelers have a duty to ensure that the equations are applica-
ble to the problem at hand.  Validation is achieved by showing, either 
graphically or statistically, that the model results can match the previously 
observed data.  As a result, model verification should precede model vali-
dation.  
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4.2 Reliability of Predictions 

Models are developed and used to help policy makers and decision makers 
better understand the environment and provide recommendations based 
on science and experience.  Therefore, the discussion among scientists and 
modelers becomes focused on whether or not a numerical model can be 
used for predictive purposes.  When a model is calibrated and then vali-
dated to replicate past natural conditions, does that mean it can predict 
future conditions?  Some argue that model forecasting is not possible.  
Their argument is that the uncertainties embedded in the numerical mod-
els prevent them from having any predictive capabilities (Oreskes, 1998; 
Konikow & Bredehoeft, 1992).  Oreskes et al. (1994) argue that a calibrated 
model, whose results match or fit a previously observed dataset, cannot 
predict future conditions due to the dynamic property of the natural envi-
ronment.  Haag and Kaupenjohann (2001) agree that predictive capacity is 
not guaranteed; however, they argue that simulation models can at least 
“outline a space of possibilities or of potentiality,” that can be used to bet-
ter understand the system being modeled.  Konikow and Bredehoeft 
(1992) also suggest that calibration does not guarantee that all future con-
ditions, or stresses, can be accurately replicated.  Further, Konikow and 
Bredehoeft (1992) indicate that “predictions should be cast in a probabilis-
tic framework with confidence limits bounding the predicted response.”  
Rykiel (1996), on the other hand, argues that model prediction is possible 
and can be proved through validation testing.  Oreskes (1998) emphasizes 
that “prediction is not as important as it is often thought to be.”  In sum-
mary, recommendations by decision makers based off model predictions 
can be better supported if modelers determine the uncertainty limitations 
of the model outputs.   

4.3 Summary 

It is unreasonable to assume that perfect validation is achievable, meaning 
that the natural environment can rarely be perfectly replicated through 
numerical models.  It is acknowledged here that there will always be 
sources of error or uncertainty in any model.  However, perfect validation 
is not essential for the purposes of numerical modeling.  Certain levels of 
imperfection in the validation process are acceptable.  It is reasonable to 
agree with Rykiel (1996) and adopt the pragmatic declaration that “a mod-
el only needs to be good enough to accomplish the goals of the task to 
which it is applied.”  In order to build confidence in the model for the deci-
sion makers and practitioners, modelers should provide: (1) the model’s 
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purpose or intended use, (2) the acceptability criteria, or limits, of the 
model validation, and (3) the operational context or assumptions within 
the model.  Therefore, the use of model performance metrics to establish 
those limits of acceptability for the validation process is recommended.  It 
is also recommended to determine uncertainty bounds for critical model 
parameters to support the decision-making process.   
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5 MRHDM Goals and Objectives 

It is essential to establish the overall study goals and objectives.  As stated 
above, defining the goals and objectives is critical to identifying the physi-
cal processes and model output variables on which to focus. Simple 
agreement between model output and field measurements measured by 
standard statistics, although useful, is not necessarily meaningful.  It is 
critical to link the model performance and the uncertainty bounds of the 
model predictions to the measures that directly define the project goals 
and objectives.  The goal and objectives of the MRHDM study are briefly 
described below: 

Goal: Reconnect Mississippi River water, sediment, and nutrient re-
sources to the surrounding basins, sufficient to provide a sustainable 
coastal ecosystem that allows for the coexistence of navigation and flood 
risk reduction.  

Objectives: 

• Re-establish natural deltaic processes to restore the maximum 
number of acres of wetlands and sustain habitats in the long term.  

• Maintain dynamic diversity of the coastal wetland ecosystem delta-
wide over time 
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6 Models’ Performance Metrics 

Model calibration can be a never-ending process.  There is always another 
combination of parameters that will produce a better fit to the observed 
data.  However, is a perfect fit necessary for the model to be informative 
and helpful to meet the project objectives?  In most cases, perfection is not 
necessary, nor is it possible.  Uncertainties in the model input (e.g., ba-
thymetry, boundary conditions, etc.), physical parameters (e.g. rough-
ness), numerical parameters (e.g. diffusion coefficients) and model 
simplifying assumptions―even in combination―do not allow for perfect 
calibration or replication of the natural system.  Therefore, it is important 
to establish a set of metrics to help identify acceptable model performance 
in such a way as to support decision making regarding project implemen-
tation.    

In 2012, FTN Associates established a set of model performance metrics 
for the LCA Medium Diversion at the Myrtle Grove study (Hammons & 
Shelden, 2012).  These metrics were intended to establish acceptable mod-
el performance using three goodness-of-fit statistics.  Data scarcity, data 
uncertainties, and inconsistencies must be considered when the perfor-
mance metrics are used or applied (Hammons & Shelden, 2012).  As a re-
sult, the parameters with the most observed data were given the most 
stringent criteria and vice versa.  For example, there are typically more ro-
bust records of stage data than discharge/velocity, salinity, or sediment 
data.  Expanding upon the metrics recently established by Hammons and 
Shelden (2012), metrics for modeling the Mississippi River dis-
charge/velocity and sediment are suggested below. 

Model performance metrics were developed for MRHDM for application 
to one-dimensional, two-dimensional, and three-dimensional models.  The 
following list specifies the model outputs that were used to create these 
model performance metrics for the MRHDM study.  It should be empha-
sized again that the performance metrics should not be used to assess 
whether a model ‘passes’ or ‘fails’.  Rather, they should be used to gain in-
sights into the model performance, identify potential weaknesses, and 
guide efforts to gather additional information to improve the performance. 

• One-Dimensional Models  
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o River water depth (hourly or daily depending on availability 
of data); 

o Water discharge (riverine or tidal) or velocity within the river 
channel and leaving the river through all major passes (daily 
averages); 

o Cross sectional load of suspended sediment (daily or annual 
depending on availability of data). Alternatively, cross sec-
tional average concentration could be used; 

o Cross sectional total (suspended plus bed) Load for sand, 
silt, and clay fractions (daily or annual); 

• Two-Dimensional Models 
o River water depth; 
o Water discharge (riverine or tidal) or velocity within the river 

channel and leaving the river through all major passes (daily 
averages); 

o Cross sectional load of suspended sediment (daily or annual 
depending on availability of data). Alternatively cross sec-
tional average concentration could be used; 

o Cross sectional total (suspended plus bed) Load for sand, 
silt, and clay fractions (daily or annual); 

o Depth averaged velocity within the river channel and leaving 
the river through major passes; 

o Depth average salinity concentration; 
 

• Three-Dimensional Models 
o Vertical and transverse profiles: 

 Velocity 
 Sediment, both coarse and fine material concentra-

tions 
o Bed change quantities (erosion and deposition) 
o Cross sectional load of suspended sediment (daily or annual 

depending on availability of data); 
o Cross sectional total (suspended plus bed) Load for sand, 

silt, and clay fractions (daily or annual); 
o Vertical salinity concentration profile. 

6.1 Developing the Model Performance Metrics 

The objective of this section is to establish metrics of acceptable model 
performance.  This section is based on, and expands upon, Hammons and 
Shelden (2012).  These metrics were created for three goodness-of-fit sta-
tistics: (1) the root mean square error (RMSE) percentage, (2) the Pearson 
product-moment correlation coefficient, and (3) bias.  The following sec-
tion presents a definition for these statistics and their corresponding mod-



Models Performance Assessment Metrics and Uncertainty Analysis 14 

el performance metrics that will be adopted for the MRHDM study.  It is 
important to note that these performance metrics can also be used for the 
validation process.   

6.2 The Root Mean Square Error 

The RMSE is a measure of the variation of predicted or modeled data to 
observed data (Legates and McCabe, 1999).  RMSE is estimated as the 
square root of the average of the squared residuals, where the residuals are 
the differences between the predicted and observed data.  The RMSE per-
centage is calculated as follows: 

 𝑹𝑴𝑺𝑬% = �∑ (𝑷𝒊−𝑶𝒊)𝟐𝒏
𝒊=𝟏

𝒏
∗ 𝒏
∑ 𝑶𝒊𝒏
𝒊=𝟏

∗ 𝟏𝟎𝟎% A1 

where:   
𝑃 = predicted value 
𝑂 = observed value 
𝑛 = number of observations 

 
A small RMSE percentage corresponds to a better fit between the predict-
ed and observed data.  Table 1 shows the model performance metrics for 
RMSE percentage of one-, two-, and three-dimensional models.  The ta-
bles are organized into two targets: high and low.  The high (desired) tar-
get represents a very good match between the model predictions and the 
field observations, whereas the low (acceptable) target represents a mod-
erate match.  If a model does not meet the acceptable target, it does not 
mean that the model is not useful nor does it imply that insights cannot be 
gained from such a model.  Rather, it should be acknowledged and taken 
into account during analysis and interpretation.  These ranges are not in-
tended to be rigid metrics to assess performance; rather, they should be 
viewed as guidelines.  It should be noted that water depth has been used in 
the RMSE calculations instead of stage (water level).  Since stage is refer-
ences to an arbitrary datum, it is not possible to express the results in per-
cent.  As such, water depth is being proposed as an alternative to evaluate 
the models’ performance. 
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Table 1.  Root Mean Square Error Metrics for One-, Two-, and Three-dimensional Models. 

One-dimensional Models 

Model Output Target – Desired Target – Acceptable 

River Water Depth < 15% for all stations 
not applicable, will need to 

use direct units 

Total Suspended Concentration < 33% for all stations < 50% for 50% of stations 

Total (susp. plus bed) Load for 

Coarse Fraction  
< 33% for all stations < 50% for 50% of stations 

Total (susp. plus bed) Load for 

Fine Fraction 
< 33% for all stations < 50% for 50% of stations 

Water discharge < 20% for all stations < 20% for 50% of stations 

Two-dimensional Models 

Model Output Target - Desired Target - Acceptable 

River Water Depth < 15% for all stations < 15% for 80% of stations 

Depth Average Salinity* < 20% for all stations < 40% for 50% of stations 

Total Suspended Concentration < 33% for all stations < 50% for 50% of stations 

Total Load for Coarse Fraction < 33% for all stations < 50% for 50% of stations 

Total Load for Fine Fraction < 33% for all stations < 50% for 50% of stations 

Velocity (depth average) < 20% for all stations < 20% for 50% of stations 

Water Discharge < 20% for all stations < 20% for 50% of stations 

Three-dimensional Models 

Model Output Target - Desired Target - Acceptable 

Velocity (vertical profile) < 20% for all stations < 30% for 50% of stations 

Velocity (transverse profile) < 20% for all stations < 30% for 50% of stations 

Coarse Sediment (vertical profile) < 33% for all stations < 50% for 50% of stations  

Fine Sediment (vertical profile) < 33% for all stations < 50% for 50% of stations 

Total Load for Coarse Fraction < 33% for all stations < 50% for 50% of stations 

Total Load for Fine Fraction < 33% for all stations < 50% for 50% of stations 

Vertical Salinity concentration 

profile 
< 20% for all stations < 40% for 50% of stations 

* If phase errors are detected, and since it may amplify RMSE errors and 
present unrealistic model performance metrics, it is recommended to 
compare maximum and minimum or daily mean salinities instead of high-
er frequencies such as hourly.  
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6.3 Pearson Product-Moment Correlation Coefficient 

The Pearson product-moment correlation coefficient, r, is a measure of the 
phasing between the predicted and observed data (Legates and McCabe, 
1999).  It does not take into account the amplitude of the residuals, but ra-
ther how well the peaks and troughs of the curves line up.  The Pearson 
product-moment correlation coefficient is calculated as follows: 

 

 𝒓 = ∑ (𝑷𝒊−𝑷�)(𝑶𝒊−𝑶�)𝒏
𝒊=𝟏

�∑ (𝑷𝒊−𝑷�)𝟐𝒏
𝒊=𝟏 �∑ (𝑶𝒊−𝑶�)𝟐𝒏

𝒊=𝟏

 A2  

 
where:  
 𝑃 = predicted value 
 𝑃� = mean of predicted values 

𝑂  = observed value 
𝑂�  = mean of observed values 
𝑛  = number of observations 

 

The value of r ranges is from -1.0 to +1.0, where a value of +1.0 is pre-
ferred.  The following tables show the model performance metrics for the 
Pearson product-moment correlation coefficient of one-, two-, and three-
dimensional models, respectively.  Table 2 is organized in a similar fashion 
to the tables for the RMSE.  Some of these metrics can be assessed only if 
the data are available.  These metrics are not applicable, or at least not re-
liable, if data are scarce or the sample size is small (e.g. short record, or 
few data points).  Such decision would be made by the modeling teams. 
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Table 2.  Correlation Coefficient Metrics for One-, Two-, and Three-dimensional Models. 

One-dimensional Models 

Model Output Target - Desired Target - Acceptable 

River Water Depth > 0.9 for all stations > 0.9 for 80% of stations 

Total Suspended Concentration > 0.5 for all stations > 0.5 for 50% of stations 

Total (susp. plus bed) Load for 

Coarse Fraction  
> 0.5 for all stations > 0.5 for 50% of stations  

Total (susp. plus bed) Load for Fine 

Fraction 
> 0.5 for all stations > 0.5 for 50% of stations  

Water discharge > 0.8 for all stations > 0.7 for 50% of stations 

 
Two-dimensional Models 

Model Output Target - Desired Target - Acceptable 

River Water Depth  > 0.9 for all stations > 0.9 for 80% of stations 

Total Suspended concentration  > 0.5 for all stations > 0.5 for 50% of stations 

Load for Coarse Fraction > 0.5 for all stations > 0.5 for 50% of stations  

Load for Fine Fraction  > 0.5 for all stations > 0.5 for 50% of stations  

Depth averaged salinity > 0.7 for all stations > 0.5 for 50% of stations 

Velocity (depth average) > 0.8 for all stations > 0.7 for 50% of stations 

Water Discharge > 0.8 for all stations > 0.7 for 50% of stations 

 
Three-dimensional Models 

Model Output Target - Desired Target - Acceptable 

Velocity (vertical profile) > 0.75 for all stations > 0.75 for 50% of stations 

Velocity (transverse profile) > 0.75 for all stations > 0.75 for 50% of stations 

Coarse Sediment (vertical profile) > 0.5 for all stations > 0.5 for 50% of stations  

Fine Sediment (vertical profile) > 0.5 for all stations > 0.5 for 50% of stations  

Load for Coarse Fraction > 0.5 for all stations > 0.5 for 50% of stations 

Load for Fine Fraction  > 0.5 for all stations > 0.5 for 50% of stations 

Vertical Salinity concentration profile > 0.7 for all stations > 0.5 for 50% of stations 
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6.4 Bias 

Assessing the model bias is important in order to ensure that the model is 
not consistently over- or underestimating critical quantities.  Or at least, if 
the model has inherent bias that cannot be corrected, it is important for 
such bias to be documented and taken into account during the analysis.  
Bias can be calculated as follows: 

 𝑩𝒊𝒂𝒔 = 𝑷�− 𝑶�

 𝑶�
 A3 

where: 
  𝑃�  = mean of the predicted values 
 𝑂�  = mean of observed values 

 
Table 3 shows the model performance metrics for the bias for one-, two-, 
and three-dimensional models, respectively.  It should be noted that bias 
could be positive (overestimation) or negative (underestimation).  As such, 
the values listed in the table apply to the magnitude of the bias regardless 
of the sign.  The table is organized into two ranges with an ideal range 
(goal), which is desirable, and a range limit, which is the limit of accepta-
ble performance. 
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Table 3.  Bias Metrics for One-, Two-, and Three-dimensional Models. 

One-dimensional Models 

Model Output Target - Desired Target - Acceptable 

River Water Depth < 10 for all stations < 10 for 80% of stations 

Total Suspended Concentration < 20 for all stations < 20 for 50% of stations 

Total (susp. plus bed) Load for 

Coarse Fraction  
< 20 for all stations < 20 for 50% of stations 

Total (susp. plus bed) Load for Fine 

Fraction 
< 20 for all stations < 20 for 50% of stations 

Water discharge < 15 for all stations < 15 for 50% of stations 

Two-dimensional Models 

Model Output Target - Desired Target - Acceptable 

River Water Depth < 10 for all stations < 10 for 80% of stations 

Total Suspended concen. < 20 for all stations < 20 for 50% of stations 

Load for Coarse Fraction  < 20 for all stations < 20 for 50% of stations 

Load for Fine Fraction  < 20 for all stations < 20 for 50% of stations 

Salinity (depth average)  < 20 for all stations < 20 for 50% of stations 

Velocity (depth average)  < 15 for all stations < 15 for 50% of stations 

Water Discharge < 15 for all stations < 15 for 50% of stations 

Three-dimensional Models 

Model Output Target - Desired Target - Acceptable 

Velocity (vertical profile)  < 15 for all stations < 15 for 50% of stations 

Velocity (transverse profile)  < 15 for all stations < 15 for 50% of stations 

Coarse Sediment (vertical profile) < 20 for all stations < 20 for 50% of stations 

Fine Sediment (vertical profile)  < 20 for all stations < 20 for 50% of stations 

Load for Coarse Fraction  < 20 for all stations < 20 for 50% of stations 

Load for Fine Fraction  < 20 for all stations < 20 for 50% of stations 

Vertical Salinity concentration profile < 20 for all stations < 20 for 50% of stations 
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7 Uncertainty Analysis  

In the previous section of this report, guidelines for calibrating and vali-
dating the numerical models used in the MRHDM study were introduced.  
However, a well-calibrated and validated model may or may not be ade-
quate to provide insights and support decisions regarding coastal restora-
tion and protection strategies.  Decision makers need to know the 
reliability of the predictions determined by the numerical models.  As 
such, it is important to establish quantitative measures to define the word 
“reliable.”  For example, it is helpful to formulate the model predictions in 
the following manner: “The numerical model predicts, with 80% confi-
dence, that a sediment diversion at River Mile “x”, would build “y” acres of 
land after 50 years.”  It is also critical to provide assurance that these pre-
dictions incorporate environmental factors such as sea-level rise, subsid-
ence, sediment loading, and runoff volumes.  It is strongly emphasized 
that the models’ prediction assumes a specific trend for these environmen-
tal factors.  These trends are projections based on the best available sci-
ence, and will be explored through scenario analysis and simulations.  
However, if such trends do not materialize in the future, the models’ pre-
dictions would not be accurate and it would not be the responsibility of 
these hydrodynamic, salinity, and sediment models.  Such statements 
cannot be made without a carefully designed uncertainty analysis.  This 
section introduces an approach that would quantify the uncertainty 
bounds of the models’ predictions. 

In this section, we closely follow the uncertainty approach of Lall et al. 
(2002) that was also adopted in Louisiana’s 2012 Coastal Master Plan*.  
Similar to the master plan, and as indicated previously, the MRHDM study 
relies on numerical predictive models to simulate the current conditions of 
the Lower Mississippi River, the delta, and the receiving basins.  The mod-
els will also be used to analyze the future conditions under plausible varia-
tions in environmental conditions such as sea-level rise and subsidence.  
Further, the models will be used to evaluate the local and systemwide cu-
mulative impacts of proposed restoration strategies over short- and long-
term temporal scales.  However, it is expected that such predictive tools 
include uncertainties.  These uncertainties are defined as the disparity be-
tween model predictions and reality that result from error propagation 
through the model (Lall et al., 2002).  Uncertainties result from: (1) in-
                                                                 
* http://www.coastalmasterplan.louisiana.gov/ 

http://www.coastalmasterplan.louisiana.gov/
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formational uncertainties in specifying boundary and initial conditions, 
(2) structural uncertainties including errors in model structure and varia-
bility of observed values over different spatial/temporal scales than model, 
and (3) numerical errors in the model algorithm.  There are numerous 
sources that contribute to these uncertainty components, including: 

• Outdated, insufficient, inaccurate, or unrepresentative input data 
(bathymetry, topography, freshwater inflow volumes, sediment 
load, constituents load, etc.); 

• Poor or incomplete knowledge of the pertinent physical processes 
represented in the predictive models; 

• Approximations and numerical assumptions in the numerical 
schemes; 

• Imperfect characterization of numerical and physical parameters in 
the formulations utilized in the models. 
 

The data collection program of the MRHDM study is specifically designed 
to address the first and second bullets listed above.  Although it is not ex-
pected to obtain a perfect set of field observations, the data collection pro-
gram is the logical approach to minimize these uncertainty sources, 
especially if such a data collection program is maintained beyond the dura-
tion of this study.  The study team adopted a multiple-models philosophy 
to help overcome and understand the limitations and constraints of the 
approximations and numerical assumptions (see third bullet).  These in-
termodels applications will provide invaluable insights into the impact of 
these approximations and assumptions on capturing the spatial and tem-
poral patterns of the pertinent physical processes studied herein.  Hence, 
the focus of the uncertainty analysis will be on the fourth bullet from the 
list above, specifically the uncertainties in the models parameters. 

As such, the proposed uncertainty analysis approach for the MRHDM 
study is founded on: 

• Determining a clear set of performance measures (acres of land built, 
reduction of flood elevations, etc.) as indicators for the response of the 
natural system (Lower Mississippi River and its receiving basins) to 
restoration projects; 

• Establishing the key model parameters (as reflected in the sensitivity 
analysis) with the strongest influence on the response of the Lower 
Mississippi River and its receiving basins to restoration projects; 

• Identifying and analyzing the impact of uncertainties in specifying the-
se parameters on the selected performance measures.   
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The term “parameter” refers to any model term that controls the relation-
ship between model inputs (drivers) and outputs (response).  Parameters 
could be a simple numerical value, table, or a mathematical relationship. 

7.1 General Outline of the Uncertainty Analysis Approach 

The approach outlined below intends to determine uncertainties of the key 
model parameters influencing the performance measures.  The perfor-
mance measures are identified as the prime factors for selecting the resto-
ration strategies; that is, they are proxies to the project objectives.  
Quantifying the uncertainty boundaries associated with model predictions 
would allow decision makers to evaluate whether there is potential risk in-
volved in a given restoration strategy.  The approach adopted from Lall et 
al. (2002) is described below:  

• Step 1: Determine the performance measures most appropriate as 
proxies for the project objectives.  Examples of a performance 
measures include: (1) surface area of land created as a result of a sedi-
ment diversion, (2) shoaling/erosion in the river channel, (3) changes 
in currents (as a proxy of impact on navigation), and (4) change in 
flooding to nearby communities, etc.  These are only examples; actual 
measures should be formulated and agreed on by the project team and 
managers in the early stages.  

• Step 2: Identify the model outputs that impact the performance 
measures identified in Step 1.  For example: velocities, stage, water 
discharge, sediment concentration, and erosion/shoaling quantities.   

• Step 3: Perform a sensitivity analysis to determine which model pa-
rameters or functional relationships influence the model outputs iden-
tified in Step 2.  The sensitivity analysis should result in a set of 
independent (uncorrelated) parameters.  The modeling team should 
focus on the parameters that have the most impact on the model out-
put identified in Step 2 to minimize the number of numerical simula-
tions needed to complete the uncertainty analysis.  It might be 
challenging to identify a set of parameters that are fully―in the formal 
statistical sense― uncorrelated.  Examples of parameters that might 
result from this sensitivity analysis include roughness parameters, co-
efficients in the sediment transport formulations, coefficients in the 
morphological formulations, and numerical diffusion coefficients. 

• Step 4: For each parameter selected in Step 3, the modeling teams 
should identify a range that the parameter is likely to fall.  This range 
reflects the degree of uncertainty associated with each parameter.  The 



Models Performance Assessment Metrics and Uncertainty Analysis 23 

range should respect accepted values of these parameters in the litera-
ture. 

• Step 5: Design an array of numerical simulations based on combina-
tions of values assigned to the parameters identified in Steps 3 and 4 
to reflect the specified parameter uncertainties. The combinations of 
parameter values should be selected to produce the widest possible 
range in the model outputs and performance measures identified in 
Step 1.   

• Step 6: Based on the results of Step 5, the modeling teams (or an as-
signed analyst) would construct empirical probability distributions for 
each of the selected performance measures.  These approximate prob-
ability distributions are used to: 

o Assess the impact of model uncertainties on the prediction of 
performance measures; 

o Evaluate whether―and how such―uncertainties can affect the 
selection of a specific restoration strategy or determine whether 
a restoration strategy is or is not feasible. 

7.2 Detailed Methodology and Procedure 

7.2.1 Selection of Performance Measures   

The selection of the performance measures should be done through full 
participation of the technical teams, the study planners, and the managers.  
It is also understood that environmental factors such as various rates of 
sea-level rise and subsidence, will be investigated through dedicated nu-
merical simulations.  A tentative set of performance measures is included 
below.  This list will be revised and refined:   

• Surface area built in the receiving basins through sediment diversions; 
• Change in flooding (flood depth) of nearby communities; 
• Sediment erosion/deposition volume in the river channel; 
• Change in velocities in the river channel (proxy to navigation inter-

ests); 
 
These and other performance measures would be considered as objectives 
or targets. The performance measures would then dictate the critical and 
relevant model parameters.  These parameters directly control the model 
output used to calculate the performance measures.  However, the impact 
of these model parameters on the model output and subsequently on the 
performance measures is uncertain.  As such, this analysis is designed to 
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quantify the uncertainty bounds of the performance measures as propa-
gated through the model parameters. 

7.2.2 Critical Model Outputs 

The modeling teams would be required to identify critical model outputs 
for each of the performance measures previously identified.  The modeling 
teams should provide insight on the possible impact of these outputs on 
the performance measures (e.g., higher diverted sediment load increases 
surface area of land built).  This is necessary to design the attributes of the 
uncertainty simulations, which will be discussed in subsequent sections.  
The preliminary list of model outputs that are believed to influence the 
performance measures (along with a list of model parameters affecting 
these model outputs) is provided in Table 4. 

Table 4.  Examples of key model parameters affecting the model output and subsequently 
influencing the performance measures.  Note: sediment coefficients in the table are 

placeholder variables listed here for demonstration purposes only. They still need to be 
identified by the modeling teams. 

Output Parameter with Uncertainty 

Stage Bed Roughness 

Salinity 
Bed Roughness 

Diffusion Coefficient 

Sediment 

Settling velocity  

Sediment formulations coefficients 

Sediment substrate parameters 

Morphological parameters 

Velocity 
Bed Roughness 

Turbulence model parameters 

 

As shown in the Table 4, there are parameters that influence stage, salini-
ty, sediment, and velocity outputs.  Specifying a value for each of these pa-
rameters is subject to uncertainty.  In the model calibration and 
uncertainty analysis report, the modeling teams should provide synopses 
of each of these parameters, how a value has been assigned, and more im-
portantly, how a range has been established for each of these parameters.  
Table 5 provides an example of outlining the range of each of these param-
eters, and it indicates the value that was identified during the calibration 
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procedure to produce the best comparison with the available field observa-
tions (referred to here as the “Base” value).  Some or all of these parame-
ters are spatially variable.  As such, these ranges should be established for 
each parameter value for each spatial zone or region. The five samples de-
fining the range of each parameter will be utilized in designing the param-
eter combinations used in the uncertainty simulations. 

Table 5.  Example of the uncertainty range of the key model parameters that influence the 
models’ output. 

 Parameter Setting 

Key Model Parameters Low 
Medium 

Low 
Base 

Medium 

High 
High 

Bed roughness      

Diffusion coefficients      

Sediment settling velocity      

Sediment formulations coeffi-

cients 
     

Sediment bulk density      

Turbulence model parameters      

 

7.3 Methods 

The previous sections outlined the process of identifying: (1) a set of per-
formance measures that are critical and can serve as proxies for the 
MRHDM objectives, (2) a set of key model parameters that affect the se-
lected performance measures, and (3) a range for each of the key model 
parameters listed in item (1) above.  These ranges are intended to capture 
the uncertainty in these parameters.  Ideally, one should establish a full 
probability distribution of these key parameters.  However, that might be 
impractical due to the complexity of the physical processes involved in this 
massive modeling effort.  Key parameters are not precisely known, and as 
such, can potentially propagate uncertainty in the model out-
put/predictions.  Further, due to the large spatial and temporal scales in-
cluded in this study, it may not be possible to perform sufficient numerical 
experiments to establish such a probability distribution.  Hence, establish-
ing a range and sampling within that range for each key parameter might 
be the practical and acceptable approach for the MRHDM study. 
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7.3.1 Design of Uncertainty Analysis Realizations 

Next, a simulation experiment composed of multiple model simulations 
(referred to here as “realizations” to distinguish them as specific numerical 
simulations used in the uncertainty analysis).  These realizations are based 
on sampling from the key model parameter values identified in Table 5.  It 
is important to note here that values assigned to the key model parameters 
were selected such that the various combinations produce the widest pos-
sible range in the model output predictions.  For example, parameters 
should be aligned to produce the most erosion in one uncertainty analysis 
realization, and in another case they should be aligned to produce the 
most accretion.  This would produce the widest possible range of model 
output and provide insights regarding the possible uncertainty range. 

The performance measures identified here, for instance, sediment load 
through a diversion (or acres of land built as a result of diverting such sed-
iment load) would be used to understand and quantify the uncertainty―or 
associated risk―of the models predictive ability.  For example, the uncer-
tainty realizations described above would produce values for such perfor-
mance measures as the sediment load through a diversion.  A reasonable 
quantity to focus on could be annual sediment load through the diversion.  
Analyzing the results of the five realizations described above over a span of 
50 years would provide insights regarding the impact of model uncertain-
ties on land building prediction as an example of the performance 
measures.  

7.3.2 Construction of Cumulative Distribution Functions (CDF) 

Continuing with the example of acres of land built, a cumulative distribu-
tion function is calculated from the results of these uncertainty realiza-
tions.  Graphical analysis provides insight on the probability that the 
amount of acres built is less than a specific value.  The probability of being 
greater (i.e., exceedance) than such a value can be easily calculated.  How-
ever, the CDF analysis provides information far more important than the 
simple extraction of the probability of exceedance.  For example, the width 
of each CDF curve provides a measure of the impact of model-induced un-
certainties on the ability to predict a specific value of acres built. The CDF 
curve can also be used to provide the acreage of land built with a confi-
dence range of 5%-95% or 25%-75%.  It can also be used to determine the 
median value (50% probability in the CDF curve).   
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One of the central questions of decision makers pertains to the ability of 
the model(s) to show a discernible impact of a certain restoration strategy 
or whether that impact would be masked or shadowed by uncertainties.  
The proposed uncertainty analysis herein is specifically designed to ad-
dress this and similar questions.  An ideal case can been seen in Figure 2a, 
where the 25%-75% confidence bound for a hypothetical parameter of in-
terest under one restoration option is completely separate from the confi-
dence bound under the other hypothetical option.  This is an ideal case 
where the impact of a restoration action was clearly not masked by model 
uncertainty.  In Figure 2b, the confidence bounds of the two options over-
lap in this hypothetical scenario.  In this case, the impact of the restoration 
action is masked by the model uncertainty. 

Figure 2: Cumulative probability functions (CDF) for a hypothetical parameter of interest.  The 
figure demonstrates scenarios in which model uncertainty does not mask impact of 

restoration action (left panel) and does mask (right panel).  

 

 

An alternative―and perhaps a simpler―indicator of the ability of numeri-
cal models to assess the impact of a restoration strategy is to determine the 
median of the distribution of the base case and cases with projects.  It 
would be of value to identify if the median value of the “with project” falls 
outside the CDF curve of the base condition which would imply that the 
model prediction of the impact of a project is not masked by uncertainties.  
At times, the model uncertainty would mask the ability of the model to 
provide a discernible prediction.  If the CDF curves of the ‘with’ and ‘with-
out project’ exhibit excessive overlap, that would imply that the impact of a 
specific project or strategy is minor or the model is unable to provide a 
discernible prediction compared to the base case. 
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7.3.3 Temporal Variations of Uncertainty 

The variability of the uncertainty bounds around the numerical models’ 
predictions is of great interest to decision makers.  To fully assess the fea-
sibility of a restoration project or strategy, it is important to quantify its 
benefits not only at the present time but also in the future.  As such, it is of 
value to generate CDF curves at incremental years in the future.  For ex-
ample, during a 50-year simulation, one can construct CDF curves at years 
5, 10, 15... 45, and 50.  Examining such curves would provide insights re-
garding whether the uncertainty bounds are stable or whether they grow 
as time passes.  An important indicator that should be tracked is the tem-
poral variation in the median prediction (50th percentile) and whether the 
“with project” scenario falls within or outside the uncertainty bounds of 
the “without project” case.  Figure 3 shows how the uncertainty bounds 
might grow with time.  Despite this growth, Figure 3a is an example of how 
the model prediction for one restoration action (black lines) was distinct 
from the other (grey lines).  Solid line indicates the median; whereas the 
dashed lines reflect the 25 and 75 percentiles.  It is critical to ensure that 
the model uncertainty are not large enough to partially or completely mask 
and limit the ability of the model to provide discernible impacts on the 
natural system from a restoration or protection strategy (Figure 3b).  

Figure 3: Temporal propagation of uncertainties for a hypothetical parameter of interest 
under two restoration actions (black and grey lines).  The display bounds represent the 25th 
and 75th percentiles (dashed lines) and 50th percentile (solid line).  Figure 3a demonstrates 
distinct impacts between the two restoration scenarios while Figure 3b demonstrates partial 

overlap.  
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7.4 Closing Remarks 

As discussed earlier in this report, the model prediction uncertainty in ex-
ternal model drivers (e.g., sea-level rise, subsidence, inflow sediment load, 
and water volume), is addressed through model simulations specifically 
dedicated to examine the response of the model output to such variability.  
In this report, the focus is on the uncertainty due to imperfect knowledge 
of key model parameters.  The proposed uncertainty analysis would exam-
ine the impact of model uncertainties on the prediction of measures such 
as sediment load diverted from the Mississippi River.  It would provide a 
reliable approach to assess the feasibility of various restoration pro-
jects/strategies, and it may provide the ability to rank or prioritize them.  
Although ideally the uncertainty analysis could/should be applied to all 
alternatives, due to budget and time constraints, it is recommended here 
to perform the uncertainty analysis on the FWOP and the Final Array of 
projects.  

The outcome and benefit of the proposed uncertainty analysis is to inform 
decision makers on how model uncertainties affect the assessment and 
feasibility of proposed restoration and protection strategies.  Ultimately, 
the proposed uncertainty analysis would provide insights as to whether the 
predicted changes in the natural system, considering various restoration 
strategies, are discernibly different from those under FWOP conditions.  
Such insights and information is quite valuable to decision makers to as-
sess the viability of various restoration and protection strategies.  
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