WAR DEPARTMENT

CORPS OF ENGINEERS, U. S. ARMY

÷.

間.*

STUDIES OF RIVER BED MATERIALS AND THEIR MOVEMENT, WITH SPECIAL REFERENCE TO THE LOWER MISSISSIPPI RIVER

PAPER 17

OF THE

U. S. WATERWAYS EXPERIMENT STATION VICKSBURG, MISSISSIPPI

JANUARY, 1935

MISSISSIPPI RIVER COMMISSION PRINT St. Louis, Mo. 1000. 5-35 This paper presents the results of two closely related investigations which have been actively carried on by the U. S. Waterways Experiment Station since the summer of 1932. In August of that year, the Chief of Engineers, U. S. Army, directed that studies be undertaken to determine the force of flowing water required to move materials composing the bed of the Lower Mississippi River. In complying with this directive it was realized that much information was needed, not only concerning the tractive force required to move particles of different sizes and physical characteristics, but also concerning the actual composition of the bed of the Mississippi River from Cairo, Illinois to the Gulf of Mexico. Without accurate knowledge of the nature of the material composing the bed, it would be impossible to evaluate the forces required to move it. Consequently, the problem divided naturally into two phases.

Part I of this report contains a resume' of results obtained from flume tests of materials moved by hydraulic traction. This work was begun under the immediate supervision of Lieutenant P. W. Thompson, C. E., designer of the special flume used throughout the investigation. At a later date this work was taken over by J. B. Tiffany, Jr., Junior Engineer, upon whom fell the task of correlating data, analyzing the results, and preparing the subsequent report. C. E. Bentzel, Junior Engineer, who performed most of the actual tests and who assisted in the study of the data, performed a great service to the Station through the development of the velocity meter which bears his name. The Bentzel Velocity Tube, which is described in the main body of this report, has largely supplanted other types of velocity-measuring devices in the hydraulic model studies at the U. S. Waterways Experiment Station.

Part II of this report consists of a tabulation and discussion of data relative to the characteristics of the materials composing the bed of the Lower Mississippi River. Mr. Charles W. Schweizer, Engineer, of the Mississippi River Commission, in 1932 made a trip over the Lower Mississippi and several of its tributaries and procured about 750 small samples of bed material, which were analyzed in the soil mechanics laboratory at this Station, under the direction of Spencer J. Buchanan, Soils Engineer.

Special credit is due to Lieutenant Herbert D. Vogel, C. E., former Director of the U. S. Waterways Experiment Station, who planned the scope of these investigations, and under whose direction most of the actual work was performed. Lieutenant K. D. Nichols, C. E., rendered valuable service in interpreting data and checking results.

Acknowledgment is here made of the service and suggestions of Capt. Hans Kramer, C. E., whose work in Germany proved helpful as a basis for undertaking the study. Gratitude is also expressed to Prof. K. C. Reynolds and Mr. C. H. MacDougall of the Massachusetts Institute of Technology for their helpful cooperation, and to Profs. Henry V. Howe and R. Dana Russell of the Department of Geology of the Louisiana State University for their work in the petrographic analysis of the samples of bed materials. It is desired to emphasize that the investigations conducted thus far by the U. S. Waterways Experiment Station cover a very limited field in the research on critical tractive force and rates of river bed materials. However, it is believed that this report will add much to the general fund of knowledge. For a complete bibliography on this subject, the reader is referred to "Sand Mixtures and Sand Movement in Fluvial Models", by Hans Kramer, Proceedings, Am. Soc. C. E., April, 1934, or to "Bibliography on the Subject of Transportation of Solids by Flowing Water in Open Channels", published by the United States Department of the Interior, Bureau of Reclamation, Denver, Colorado. Additional references are given throughout this report.

,×

FRANCIS H. FALKNER

1st Lieut., Corps of Engineers Director, U. S. Waterways Experiment Station

STUDIES OF RIVER BED MATERIALS AND THEIR MOVEMENT, WITH SPECIAL REFERENCE TO THE LOWER MISSISSIPPI RIVER

n

5

.

3

TABLE OF CONTENTS P.	AGE
Preface	ii
Part I-Flume Studies of Movement of River Bed Materials	1
Preliminary Considerations, Apparatus, and Procedure	1
Authority for the Bed-Load Studies	1
Program of Experiments	2
Description of Materials Tested	2
Collection of Samples.	6
Analysis of Samples	6
Set-up for Experiments, and Measuring Devices	8
The Tilting Flume	8
The Weir Box and Weir Plate	8
The Stilling Chamber	8
The Approach Flume	8
The Sandtrap	10
The Tailgate	10
Pumps, Constant-head Tank, Return Channel	10
Gages	10
Flow Indicator	12
Automatic Sandieed	14
Bentzei veiority 1 ube	14
Closefficient of Materials in Transportation	14
Pad Load Mexampt	16
Critical Tracting Force	17
	17
Symbols and Units	17
Procedure of Experimentation	19
Setting the Slope of the Flume	19
Molding the Bed	19
Other Preliminary Steps	19
The Test Proper	20
Observations	23
Head on Weir	23
Water-Surface Elevation	23
Temperature of Water	23
Velocities	23
Character of Flow—Laminar or Turbulent	24
Sand Movement	24
Riffles	24
Profiles	24
Presentation of Data from Experiments	24
Explanation of Tables	24
Explanation of Curves Showing Basic Data	25
Du Boys' Expression for Tractive Force	26
Results of Experiments.	28
General	28
Critical Tractive Force	29
Definition	29
Resume' of Previous Investigations	29
Critical Tractive Force Curve	29
Need for New Definition for General Movement, for Use in Models	31
Suggested New Definition for General Movement	33
Evaluation of Critical Tractive Force	34
Rate of Bed-Load Transportation	37
Resume' of Previous Investigations	37
Basis for Formulation of Rate of Movement	37
U. S. Waterways Experiment Station Formulation of Rate of Movement.	37

-

Critique of Equation (7)	
Limitations of Equation (7)	
Variation of Rate with Grain Size	
Variation of Manning's Roughness Coefficient (n)	
Applicability of the Manning Formula	
Variation in Values of n	
Relation of Manning's n and Rate of Sand Movement	
Riffle Development	
Variation in Riffle Size with Type of Bed Material	
Tractive Force Value at Appearance of Riffles	An
Velocities	
Mean Velocities	··
Bottom Velocities	
Surface Velocities	
Vertical Distribution of Velocities	
Turbulence Criteria	
ummary of Results I—Studies of Composition of Bed Materials in Mississippi River System	
ummary of Results I—Studies of Composition of Bed Materials in Mississippi River System cope and Procedure Purpose	
ummary of Results I—Studies of Composition of Bed Materials in Mississippi River System cope and Procedure Purpose Procuring the Samples	
ummary of Results I—Studies of Composition of Bed Materials in Mississippi River System cope and Procedure Purpose Procuring the Samples The Sampler	
ummary of Results	
ummary of Results I—Studies of Composition of Bed Materials in Mississippi River System cope and Procedure Purpose Procuring the Samples The Sampler Use of the Sampler Analysis of Samples Mechanical Analysis Absolute Specific Gravity Petrographic Analysis esults of Analyses Presentation of Data Plate 58	
ummary of Results	
ummary of Results	

Part I

ъ.

rar	sie ivo.	1 400
1	Physical Characteristics of Mixtures Tested	2
2	Nomenclature and Units	18
3	Critical Tractive Force	36
4	Value of Constants in Expression $W = \frac{1}{n} \left(\frac{DS - D_o S_o}{k_1} \right)^m$	39
5	Summary of Computed Values of Manning's n	48
6	Value of Tractive Force at Appearance of Riffles	50
7	Values of Reynolds' Number and VR-Turbulence Criterion at Change from Laminar to	
	Turbulent Flow	54
8	Observed Data and Computed Results-Flow on Smooth Bottom-Slope 0.0005	57
9	Observed Data and Computed Results-Flow on Smooth Bottom-Slope 0.0010	58
10	Observed Data and Computed Results-Flow on Smooth Bottom-Slope 0.0015	59
11	Observed Data and Computed Results-Sand No. 1-Slope 0.0010	60
12	Observed Data and Computed Results-Sand No. 1-Slope 0.0015	61
13	Observed Data and Computed Results-Sand No. 1-Slope 0.0020	62
14	Observed Data and Computed Results-Sand No. 2-Slope 0.0010	63
15	Observed Data and Computed Results-Sand No. 2-Slope 0.0015	64
16	Observed Data and Computed Results-Sand No. 2-Slope 0.0020	65
17	Observed Data and Computed Results-Sand No. 3-Slope 0.0010	66
10	Observed Data and Computed Peculte-Sand No. 3-Slope 0.0015	67

19	Observed Data and Computed Results-Sand No. 3-Slope 0.0020	68
20	Observed Data and Computed Results-Sand No. 4-Slope 0.0010	69
21	Observed Data and Computed Results-Sand No. 4-Slope 0.0015	70
22	Observed Data and Computed Results-Sand No. 4-Slope 0.0020	71
23	Observed Data and Computed Results-Sand No. 5-Slope 0.0010	72
24	Observed Data and Computed Results-Sand No. 5-Slope 0.0015	73
25	Observed Data and Computed Results—Sand No. 5—Slope 0.0020	74
26	Observed Data and Computed Results—Sand No. 6—Slope 0.0010	75
27	Observed Data and Computed Results—Sand No. 6—Slope 0.0015	76
28	Observed Data and Computed Results-Sand No. 6-Slope 0.0020	77
20	Observed Data and Computed Results—Sand No. 7—Slope 0.0010	78
20	Observed Data and Computed Results—Sand No. 7—Slope 0.0015	79
21	Observed Data and Computed Results—Sand No. 7—Slope 0.0020	80
9.0	Observed Data and Computed Results Sand No. 8 Slope 0.0010	81
04	Observed Data and Computed Results Sand No. 8 Slope 0.0015	89
33 97	Observed Data and Computed Results Sand No. 8 Slope 0.0015	82
34 0*	Observed Data and Computed Results—Sand No. 6—Slope 0.0020	00 04
35	Observed Data and Computed Results—sand No. 9—Slope 0.0030	84
36	Observed Data and Computed Results—Sand No. 9—Slope 0.0040	85
37	Observed Data and Computed Results-Sand No. 9-Slope 0.0045	86
	Part II	
Tab	le No.	$\mathbf{P}_{\mathrm{AGE}}$

5.00

ģ

ah	de.	No.	

1 4 1	10 210.	
38	Samples of Bed Material of Mississippi River and Tributaries	120
39	Mechanical Analyses of Material from Bed of Mississippi River	128 - 143
40	Mechanical Analyses of Material from Bed of Tributary and Outlet Rivers	144 - 149
41	Physical Data and Various Constants of Material from Bed of Mississippi River	150 - 158
42	Physical Data and Various Constants of Material from Bed of Tributary and Outlet	
	Rivers	159 - 161

	Part II	
Tal	ble No.	$\mathbf{P}_{\mathbf{A}}$
38	Samples of Bed Material of Mississippi River and Tributaries	1:
39	Mechanical Analyses of Material from Bed of Mississippi River	128-14
40	Mechanical Analyses of Material from Bed of Tributary and Outlet Rivers	144-1
$\frac{41}{42}$	Physical Data and Various Constants of Material from Bed of Mississippi River	150-1
	Rivers	198-1
	PLATES	
PL.	ATE NO.	PAG
Fre	ntispiece-General Views of Flume Used in Experiments	
1	Grain Size Distribution of Original Materials before Testing-Cumulative Plot	~
2	Grain Size Distribution of Original Materials before Testing	
3	Hypothetical Sand Analysis Curve	
4	Microphotographs of Sand Grain Shapes	
õ	General Layout of Tilting Flume Used in Bed-Load Studies	
6	Use of Tilting Flume Appurtenances	
7	Determination of Laminar and Turbulent Flow	
8	The Automatic Sandfeed	
9	Sandfeed Rating Curves	-
10	The Bentzel Velocity Tube	
11	Rating Curves, Bentzel Velocity Tube	
12	Progressive Development of Riffles, Caused by Obstruction on Bed	11
13	Critical Tractive Force in Relation to Sand Characteristics, Using Visual Criterion	
14	Critical Tractive Force in Relation to Sand Characteristics, Using Visual Criterion-	
	Logarithmic Plot.	
19	Critical Tractive Force in Relation to Sand Characteristics, Using Visual and "Model	
1.0	Criteria	**
17	Effect of Introducing Manning s n in Rate-of-Movement Evaluation	~
17	a Sand No. 1	*
	b Sand No. 2	
	a Sand No. 2	
18	Relation of Rate of Sand Movement to Denth. Slone, and Roughness	
10	a Sand No. 4	-
	b Sand No. 5	
	c. Sand No. 6	
e to	Relation of Rate of Sand Movement to Denth. Slope, and Roughness	
	a Sand No 7	**
	b Sand No. 8	
	D. Dani 197, 0	
20	Companies of Pates of Maxament of Sanda Testad - Lorenithmic Plat	
20	Comparison of Rates of Movement of Sanda Tested	
23	Comparison of nates of movement of Sands Tested	
he	Lypical finne rormations	- 41

vi

23	Vertical Velocity Curves	51
24	Comparison of Manning's n and Mean Velocity for a Sand Bottom and a Slope 0.0010	
	Fixed Bottom of Neat Cement	87
25	Variation of Sand Discharge, Mean Velocity, Manning's n , and \int Sand No. 1, Slope 0.0010	
	Mean Grain Size with Depth	88
26	Variation of Sand Discharge, Mean Velocity, Manning's n , and Sand No. 1, Slope 0.0020	
	Mean Grain Size with Depth Sand No. 2, Slope 0.0010	89
27	Variation of Sand Discharge, Mean Velocity, Manning's n, and Sand No. 2, Slope 0.0015	
	Mean Grain Size with Depth	. 90
28	Variation of Sand Discharge, Mean Velocity, Manning's n, and Sand No. 3, Slope 0.0010	
	Mean Grain Size with Depth Sand No. 3, Slope 0.0015	91
29	Variation of Sand Discharge, Mean Velocity, Manning's n, and Sand No. 3, Slope 0.0020	
	Mean Grain Size with Depth. Sand No. 4, Slope 0.0010	92
30	Variation of Sand Discharge, Mean Velocity, Manning's n, and Sand No. 4, Slope 0.0015	
	Mean Grain Size with Depth	93
31	Variation of Sand Discharge, Mean Velocity, Manning's n, and Sand No. 5, Slope 0.0010	
	Mean Grain Size with Depth. Sand No. 5, Slope 0.0015	94
32	Variation of Sand Discharge, Mean Velocity, Manning's n, and Sand No. 5, Slope 0.0020	
	Mean Grain Size with Depth. Sand No. 6. Slope 0.0010	95
33	Variation of Sand Discharge, Mean Velocity, Manning's n, and Sand No. 6, Slope 0.0015	
	Mean Grain Size with Depth Sand No. 6, Slope 0.0020	96
34	Variation of Sand Discharge, Mean Velocity, Manning's n, and Sand No. 7, Slope 0.0010	
	Mean Grain Size with Depth Sand No. 7, Slope 0.0015	97
35	Variation of Sand Discharge, Mean Velocity, Manning's n, and Sand No. 7, Slope 0.0020	
	Mean Grain Size with Depth Sand No. 8, Slope 0.0010	98
36	Variation of Sand Discharge, Mean Velocity, Manning's n, and Sand No. 8, Slope 0.0015	
	Mean Grain Size with Depth Sand No. 8, Slope 0.0020	99
37	Variation of Sand Discharge, Mean Velocity, Manning's n, and (Sand No. 9, Slope 0.0030	
	Mean Grain Size with Denth Sand No. 9, Slope 0.0040	100
38	Variation of Sand Discharge, Mean Velocity, Manning's n, and	
	Mean Grain Size with Denth Sand No. 9, Slope 0.0045	101
30	Longitudinal Profiles of Sand Bed, Sand No. 1	102
40	Longitudinal Profiles of Sand Bed, Sands Nos. 2 and 3	103
41	Longitudinal Profiles of Sand Bed, Sand No. 4	104
49	Longitudinal Profiles of Sand Bed, Sand No. 5	105
42	Longitudinal Profiles of Sand Bed, Sands Nos. 7 and 8	106
40	Longitudinal Profiles of Sand Bed, Sand No. 7 and States to States Providence States of Sand Bed, Sand No. 9	107
45	Progressive Veniction of Size and Distribution of Crains in Movement-Sand No. 1	108
40	Progressive Variation of Size and Distribution of Grains in Movement Sand No. 2	100
40	Progressive variation of Size and Distribution of Grains in Movement Sand No. 2	110
97	Progressive variation of Size and Distribution of Grains in Movement-Sand No. 5	111
48	Progressive variation of Size and Distribution of Grains in Movement-Sand No. 4	119
49	Progressive variation of Size and Distribution of Grains in Movement—Sand No. 5	112
50	Progressive Variation of Size and Distribution of Grains in Movement—Sand No. 7	110
51	Progressive Variation of Size and Distribution of Grains in Movement—Sand No. 8	115
52	Progressive Variation of Size and Distribution of Grains in Movement-Sand No. 9	115

Part II

Pr	ATE NO.	PAGE
53	Watershed of the Mississippi River	117
54	The Alluvial Valley of the Mississippi River	118
55	Permanent Container for River Bed Sample	119
56	Sampler Used for Procuring River Bed Material	121
57	Method of Using the Silt Sampler	121
58	Variation in Composition, Mississippi River Bed Materials	124
59	Variation in Mean Grain Diameters, Mississippi River Bed Materials	126
- 00	V. Letter to Man Grain Size of Sand Only Mississippi Diver Red Materials	127

vii

STUDIES OF RIVER BED MATERIALS AND THEIR MOVE-MENT, WITH SPECIAL REFERENCE TO THE LOWER MISSISSIPPI RIVER

PART I

FLUME STUDIES OF MOVEMENT OF RIVER BED MATERIALS

PRELIMINARY CONSIDERATIONS, APPARATUS, AND PROCEDURE

The ultimate purpose of the flume studies of bed-load movement described herein was to discover and evaluate laws to the end that the river hydraulician might be able to calculate the action of a given bed material under given conditions. Inasmuch as this has been the subject of a great amount of research by both American and European experimenters during the past generation, the purpose as conceived is both far-reaching and ambitious. It was thought, however, that advances might be made on the problem, and that even failing to attain a complete answer to the baffling problem of bedload movement, many data contributing toward the final solution might be observed and recorded.

The original expectation was that, from the study of the distribution of materials in the river samples, in combination with the knowledge gained from the tests in the tilting flume, an accurate determination could be made of the tractive force required to move the material at any point in the lower Mississippi River. From this it was hoped to ascertain the stage necessary to produce the critical force in any reach of the river. It now seems certain, however, that the present state of knowledge precludes the immediate possibility of making any such sweeping conclusions. Much more research will be necessary before any satisfactory equations can be set up, to express the movement of Mississippi River bed material throughout an entire range of depth, slope, sizes of material, curvature of bends, bed configuration, etc.

The more immediate purpose of the flume tests, which was satisfactorily achieved, was the discovery of many of the basic laws underlying the subject of bed-load movement. In particular, emphasis was given to the study of the rates of movement of bed materials of various sizes, and of the tractive forces necessary for the commencement of their movement. Information was also obtained on riffle formations, values of bed roughness, turbulence, velocity variations, etc. All the data are presented for reference in tabular form at the end of Part I of this report.

Authority for the Bed-Load Studies

Authority to undertake a study of the bed-load of the Lower Mississippi River was contained in a letter from the Chief of Engineers, dated August 13, 1932, addressed to the President, Mississippi River Commission. This authority was transmitted to the Director, U. S. Waterways Experiment Station, in August, 1932.

1

Ten series of experiments were conducted in the tilting flume in the laboratory building, nine of them with sand or gravel mixtures, and one with a neat cement surface on both bottom and sides of the Each material was tested at three slopes; viz, 0.0010, 0.0015, flume. and 0.0020, except in the case of a small gravel, where slopes of 0.0030 0.0040, and 0.0045 were employed. During the course of the in-dividual tests the depth of water flowing was varied by small incre-ments to a maximum of about 0.55 foot. The three main variables, then, of the study were:

- (1)
- Sand or gravel mixture. Slope of the bed and water surface. (2)
- (3)Depth of the water in the flume.

Description of Materials Tested

All of the materials tested during the course of this study were All of the materials tested during the course of this study were natural mixtures (see Plates 1 and 2) found either in the bed of the Mississippi River, or in deposits near Vicksburg, Mississippi. The mean grain diameter (see page 5) of the mixtures ranged from a minimum of 0.2053 mm in the case of Sand No. 8, to 4.0769 mm in the case of the gravel mixture. The uniformity modulus (see page 5)*, expressing the distribution of sizes within the samples, ranged from 0.2796 to 0.6428, and the specific gravity of each of the materials was very close to 2.65. All the materials were composed of quartz and feldspar particles, with minute quantities of other minerals, the shape of the particles ranging mostly from sub-angular to sub-rounded, with some angular and some rounded particles. The following table summarizes the physical characteristics of the mixtures:

	TABLE	1	
-			

PHYSICAL CHARACTERISTICS OF MIXTURES LESTED						
Mean Siz mm	Grain e d _g in.	Uniformity Modulus M	Shape of Grains	Color	Source of Material	
0.5861	0.0230	0.2796	Sub-angular to sub-rounded	Brown	Mississippi River, Mile 190.	
0.5409	0.0213	0.4388	Sub-angular to sub-rounded	White	Creek bed near Vicksburg, Miss	
0.5246	0.0207	0.5385	Sub-rounded to rounded	Light Brown	Mississippi River, Mile 467½.	
0,5056	0.0199	0.4063	Angular to sub-rounded	White	Creek bed near Myles, Miss.	
0.4828	0.0190	0.4384	Sub-angular to angular	White	Pearl River, near Jackson, Miss.	
0.3470	0.0137	0.6428	Sub-rounded to sub-angular	Brown	Mississippi River, Mile 303½.	
0.3104	0.0122	0.5246	Sub-rounded to sub-angular	Light Brown	Hills adjacent to Okay Creek, nea	
0.2053	0.0081	0.5597	Sub-angular to angular	White	Vicksburg, Miss. National Military Park, Vicksburg,	
4.0769	0.1605	0.5661	Sub-rounded to sub-angular	Brown	Mississippi. Creek bed near Vicksburg, Miss.	
	Mean mm 0.5861 0.5246 0.5056 0.4828 0.3470 0.3104 0.2053 4.0769	Mean Size dg Grain Size dg mm in. 0.5861 0.0230 0.5409 0.0213 0.5246 0.0207 0.5056 0.0199 0.4828 0.0190 0.3470 0.0137 0.3104 0.0122 0.2053 0.0081 4.0769 0.1605	Mean Size dg in. Uniformity Modulus M 0.5861 0.0230 0.2796 0.5409 0.0213 0.4388 0.5246 0.0207 0.5385 0.5056 0.0199 0.4063 0.4828 0.0190 0.4384 0.3470 0.0137 0.6428 0.3104 0.0122 0.5246 0.2053 0.0081 0.5597 4.0769 0.1605 0.5661	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean SizeGrain gin.Uniformity Modulus MShape of GrainsColor0.58610.02300.2796Sub-angular to sub-roundedBrown0.54090.02130.4388Sub-angular to sub-roundedBrown0.52460.02070.5385Sub-rounded to roundedLight Brown0.50560.01990.4063Angular to sub-roundedWhite0.48280.01900.4384Sub-angular to sub-roundedWhite0.34700.01370.6428Sub-rounded to sub-angularBrown0.31040.01220.5246Sub-rounded to sub-angularLight Brown0.20530.00810.5597Sub-angular to angularWhite Angular4.07690.16050.5661Sub-rounded to sub-angularBrown	

* Developed by Capt. Hans Kramer, Corps of Engineers, U. S. Army, "Modellgeschiebe und Schleppkraft", Preussische Versuchsanstalt für Wasserbau und Shiffbau, Berlin, Germany, 1932; also, "Proceedings", Am. Soc. C. E., April, 1934.

The mean grain diameter, d_g , is a value often used by Krey in his experiments concerning bed-load movement, and was adopted later by Kramer, in his study of critical tractive force. Referring to Plate 3, which shows the grain sizes plotted as abscissa and the cumulative per cent passing as ordinates, d_g is simply the mean abscissa of the curve, and represents a weighted average size of particle.

The uniformity modulus, M, has been proposed by Kramer as a convenient expression for the distribution of sizes of the particles in a sand mixture. Expanding upon a scheme devised by Hummel to express the strength of concrete from the gradation curve of the aggregate, Kramer divided the area between the gradation curve

PLATE 3

Hypothetical Sand Analysis Curve

(see Plate 3) and the vertical axis into two parts, above and below the 50-per cent line. The uniformity modulus, M, is the ratio of the area below this line to the area above the line. This value, which has been found convenient when it is necessary to evaluate the distribution of particles within a mixture, has the following characteristics:

- (1) For a uniform grain size, its value is 1.0.
- (2) For a uniform distribution, its value is 1/3.
- (3) The addition of fine or coarse materials to a given mixture tends to reduce its value.
- (4) It therefore is a measure of the voids ratio. For a uniform material, which has the largest possible percentage of voids, its value is the maximum of 1.0. With the addition of finer or coarser materials, the voids ratio decreases, as does the value of M.

The value of M can be determined from the plotted sieve analysis curve, or it can be computed directly from the sieve analysis data.

The shapes of grains are classified according to a chart prepared by Dr. R. Dana Russell, Assistant Professor of Geology at the Louisiana State University. This chart, composed of micro-photographs of sand grains of various shapes, with the designation assigned to these shapes by Dr. Russell, is reproduced in Plate 4. It should be understood that the designations "angular, sub-angular", etc., are entirely arbitrary. The use of these terms has been extremely loose, with no very definite agreement among experimenters as to their exact limits. Dr. Russell's chart makes it possible, however, by means of a comparison between the microscopic view of sand grains and the chart, to give a definite classification for all grains, with most of the element of personal opinion removed. Dr. Russell's descriptions of the shape classification follows:

- (1) Angular (A)—showing very little or no evidence of wear. Edges and corners are sharp.
- (2) Sub-angular (SA)—showing definite effect of wear. The grains still have their original form and the faces are practically untouched, but the edges and the corners have been rounded off somewhat, though the angles between faces may still be sharp.
- (3) Sub-rounded (SR)—showing considerable wear. The edges and corners are rounded off to smooth curves and the area of the original faces is considerably reduced. The original shape of the grain is still distinct, however.
- (4) Rounded (R)—original faces almost completely destroyed but some comparatively flat surfaces may be present. There may be broad reentrant angles between remnant faces. All original edges and corners have been smoothed off to rather broad curves.
- (5) Well-rounded (WR)—No original faces, edges or corners left. The entire surface consists of broad curves; flat areas are absent. The original shape of the grain may be suggested by its present form, however.

Collection of Samples:

The three samples from the bed of the Mississippi River were collected by field parties of the U. S. Engineer Department, placed in sacks or drums, and transported to the Experiment Station. Most of the other samples, from creek beds and hill deposits, were obtained from commercial sand pits within 50 miles of Vicksburg.

Analysis of Samples:

Before being tested in the flume, small representative samples of the materials were submitted to the soils laboratory at the Experiment Station for analysis. In addition to a complete mechanical analysis, conducted in the Ro-Tap testing sieve shaker, each sample was subjected to a specific gravity test and to a close microscopic examination, to determine the shape of grain and mineralogic composition of the material. In addition to this original analysis of the materials, made in each case before the testing was begun, other analyses were made periodically of the grains entrapped at the lower end of the flume, and a comparison was made between the original material and that which had been moved by the flowing water in the flume.

 $\overline{7}$

PLATE 4 Microphotographs of Sand Grain Shapes Magnified 13.1 diameters

Set-up for Experiments, and Measuring Devices

All the bed-load tests were conducted in a tilting flume, which is located on the main floor of the laboratory building. The water was supplied from a circulating system, composed of an underground storage sump*, two centrifugal pumps for elevating the water to a constant-head tank on the second floor of the building, piping connections to the entrance of the weir box, weir box with measuring weir, stilling chamber, the flume itself, and the return channel.

The Tilting Flume:

8

The flume itself, illustrated pictorially in the frontispiece, and diagrammatically in Plate 5, is a wooden structure, lined with concrete trowelled to a smooth surface, and supported by two 12-inch I-beams. Rectangular in cross-section, its approximate inside dimensions are: length, 48 feet; width, 2.3 feet; depth, 1.3 feet. The I-beams are supported at the upper end on horizontal pins, and at the mid-point and lower end on jack screws, through the proper manipulation of which it is possible to set the flume to any desired slope, up to a maximum of 0.015. At the top of the flume, as shown in Plate 6, are two adjustable wooden straight edges, one on each side, which can be set to any slope desired. In actual operation, these rails have the same slope as the water surface and the bottom of the flume, and are used as a base for the various sliding measuring devices.

The Weir Box and Weir Plate:

The water was admitted through an 8-inch pipe, controlled by a valve, from the constant-head tank into the weir box; the latter is a wooden structure 10 feet long, 4 feet wide, and $3\frac{1}{2}$ feet deep (see frontispiece). This box is equipped with baffles which effectively stilled the flow before the water discharged over the weir plate, and with a stilling well and hook gage, which were used to measure the head over the weir. The weir itself, of the 90° V-notch type, is made of a $\frac{3}{8}$ -inch steel plate, with a 60° bevel on the downstream face and a 1/16-inch flat edge; it was carefully calibrated for all heads by means of a volumetric measuring tank. The rating curve for the plate was found to check very closely the curve of King's equation Q = 2.52 H $^{2.47}$; all discharge quantities, however, were taken from the experimental rating curve.

The Stilling Chamber:

From the weir box, the water was discharged into a stilling chamber (also shown in frontispiece), 4 feet wide, 6 feet long, and about $1\frac{1}{2}$ feet deeper than the flume. This chamber contains a system of baffles of various types, which served to quiet the water and allowed it to enter the flume in a smooth flow, free from waves and surges.

The Approach Flume:

The approach flume is simply a wooden trough which connects the stilling chamber with the upper end of the flume proper. It is supported on stationary foundations, and cannot be tilted with the flume.

 $\ast\,$ The first three series of tests, with Sands Nos. 2, 6, and 7, were conducted with water from the lake which supplies the outdoor models at the Station. This water was wasted into the creek bed after leaving the flume.

Hook Gage Panel Manometer Panel From Constant-Head Tank 0000000 Waste Channel to Fump Sump, - 8" Pipe Line Measuring Weis a na maredia <u> 159</u> Regulating Valve 2'- 0' Gage Outlets - 7-0° C. to C. 4-0 O Gage and Stilling Well Tilting Flume Stilling Chamber 6'-0' Weir Box Approach Flume 3'-4 Sand Trop 48'-0 10'- 0" PLAN Automatic Sand Feed located here Gate Operating Concrete Sill Concr Sill 1-6 Movable Sand Bed 4-0 42'- 6' W.5.4 CALL CONTRACTOR a second and a second PLATE 212" 1-Beam Jack Screw Floor Line of LONGITUDINAL SECTION 2.313 Ċ٦ Adjustable Rail Sand Bec GENERAL LAYOUT 12" 1- Beam OF TILTING FLUME Jack Screw USED IN BED-LOAD STUDIES TYPICAL CROSS SECTION

4

12

9

. . .

Ŧ

The Sandtrap:

The measurement of the rate of movement of the sand under test was made possible by the sandtrap at the downstream end of the flume. This trap, shown in Plate 6, consists of a suddenly enlarged section about $1\frac{1}{2}$ feet deeper than the flume itself. The sudden decrease in the velocity of the flowing water caused the sand in transportation to drop into this trap. To facilitate the removal and measurement of the sand, a wooden box lined with sheet metal was designed to fit closely into the trap. This box, equipped with handles, has rubber gaskets on all sides to insure that all the sand is caught.

This trap was found to be too small to catch the fine materials in sand No. 8. Hence, a supplementary trap with a much more enlarged section was installed for temporary use while this sand was being tested. In addition, water samples were taken from the overflow below the second trap, and the rate of suspended load movement was calculated from their turbidity measurements.

The Tailgate:

The elevation of the water surface at the lower end of the flume was controlled by the manipulation of a vertical, sliding tailgate. This gate, illustrated in the frontispiece, consists of a vertical, $\frac{3}{8}$ inch steel plate, which can be raised or lowered by two bolts which are turned by a sprocket-and-chain arrangement. Leakage around the plate was prevented by rubber seals.

Pumps, Constant-head Tank, Return Channel:

After being discharged over the tailgate, the water passed into a return channel under the floor of the laboratory building. This channel carried it to an underground, concrete-lined sump, from which it was lifted by means of centrifugal pumps to the constanthead tank. The latter served to provide a non-changing head on the measuring weir, and made it possible to secure uniform flow. The maximum capacity of the system, controlled by the pipe connecting the overhead tank with the weir box, is approximately $2\frac{1}{4}$ c. f. s.

Gages:

The elevation of the water surface, as well as the profile of the bed, was determined by means of a needle-gage (illustrated in Plate 6), which was so mounted as to slide along the rails on the side of the flume. Since the rails themselves were made parallel to the bottom of the molded bed and to the water surface, the datum plane of the gage was also parallel to the bed; consequently, readings of the gage could immediately be converted to depths regardless of the location of the gage along the flume.

Flow Indicator:

The existence of laminar or turbulent flow in the flume was determined by means of the injection of a stream of potassium permanganate solution into the water, and observation of the course taken by the colored stream. The solution was inserted into the water from an injector which worked as a syphon; this apparatus consisted of a glass tube drawn to a fine point at one end, a 3-foot length of rubber tubing, and a bottle containing the solution. The photograph at the left in Plate 7 shows this apparatus in use, and that at the right shows the typical straight, parallel stream lines existing in laminar flow. (These colored lines have their origin in small

29

34.

4

PLATE 6 USE OF TILTING FLUME APPURTENANCES Top, left: Molding the sand bed with the sliding template Top, right: Measuring an elevation with the sliding needle gage Bottom: Removing the sand box from the sandtrap

PLATE 7 DETERMINATION OF LAMINAR AND TURBULENT FLOW Left: The instrument used for injecting potassium permanganate solution Right: Typical lines of dye illustrating laminar flow

crystals of potassium permanganate which were placed on the bed of the flume; the injector was not used for this photograph.)

The rate of discharge of the solution was controlled by changes in the elevation of the bottle containing the liquid. It was necessary to regulate the flow so as to obtain the same velocity as that of the flowing water. With this set-up, thread-like lines of dye as long as 10 feet were frequently obtained.

Automatic Sandfeed:

One of the necessary conditions in an experiment involving the movement of bed-load is that there be no progressive change in the elevation or slope of the bed during the course of a test. In order to insure that this condition exists, it is necessary to secure a balance

PLATE 8 THE AUTOMATIC SANDFEED

between the amount of sand which is in movement, and which is consequently being carried out at the lower end of the flume, and the amount which is being added at the upper end. Any attempt to attain this balance by the occasional manual addition of material is likely to result in a disturbed condition at the head of the flume which will create a progressive riffle formation and may render the test valueless. Consequently, it is desirable to install some kind of automatic sandfeed which can be adjusted to discharge sand into the flume at approximately the same rate at which it is being extruded at the lower end.

It was first attempted to devise a machine following the principles suggested by Gilbert*, and later used with success by Mac-Dougall**. It was found after some experimentation with various designs, however, that the machine illustrated in Plate 8 gave acceptable results, and was much simpler in its operation and adjustment than the rotating-drum arrangement of Gilbert's. This device consisted fundamentally of a square box, 6 inches deep, divided into two

* Gilbert, "The Transportation of Debris by Running Water", U. S. G. S. Professional Paper 86. 1914.
** MacDougall, "An Experimental Investigation of Bed Sediment Transportation".

compartments which were separated by a vertical sliding partition. The box was pivoted about the center of the smaller compartment, which was used for the storage of sand, and was shaken at the open end by means of a pair of cams operating against a pair of rollers at approximately 165 r. p. m. The cams had an eccentricity of $\frac{1}{4}$ inch; a bumper was constructed on a solid block under the open end of the box, and caused a sharp blow to be delivered to the box. In operation, the box was set at a predetermined angle, dry sand was placed in the small compartment, and the sliding partition was set to an opening corresponding to the largest grain size existing in the sand under test; the rapid shaking of the box caused the sand to move in an evenly distributed layer down the slope and to drop through the slot in the base into the flume below. A piece of smooth plate glass on the bottom of the box insured a plane surface at all times.

The rate of feeding was varied by an adjustment of the slope of the bottom of the box. As can be seen in Plate 8, the shaft on which the box was pivoted had a vertical range of movement of about 6 inches. A scale was installed on the vertical adjustment to facilitate the duplication of setting. In order to keep the rollers directly over the cams on which they ran, a horizontal movement of the entire box was provided.

The sandfeed was calibrated for each sand mixture for which it was used (see page 22) before the mixture was tested, and a curve was drawn showing the variation of the rate of feed with the vertical scale setting. Three of these curves are shown in Plate 9. During the course of the test, the machine was set after each run to the position corresponding to the rate of movement found for that run. Hence there was a lag of one run in the adjustment of the quantities. Since the water discharge through the flume was increased in very small increments, however, and since the upper 22 feet of the flume were used as an entrance channel, with observations confined to the lower portion, this lag was considered to be of no importance. Furthermore, bed profiles were taken periodically, to insure that no progressive alterations were occurring in the slope of the bed.

Bentzel Velocity Tube*:

One of the most valuable incidental results of this bed-load investigation was the development of a suitable instrument for measuring low velocities of flowing water. This instrument has been constructed to measure a range in velocities from about 0.10 feet per second to as much as 4 or 5 feet per second. It has been found to be ideally suited for velocity measurements at the Station, where it has entirely superseded the use of the Pitot tube and other current-measuring devices. The principle on which the meter works is as follows (see Plate 10):

The water flowing into the upstream leg of the tube causes a velocity head to be created; the velocity head on the downstream leg, on the other hand, is negative. This difference in head causes the circulation through the tube of a small quantity of water, the amount depending upon the velocity of the water flowing through the flume. In the downstream leg of the tube, which has an even taper inside, is a small float, made of a piece of capillary glass tubing, closed at both ends, and so constructed that it has a very slight buoyancy.

When there is no flow through the tube, this float rises until it rests against a wire stop in the top of the tapered tube. When water is flowing through the tube, however, the impact of the flowing water causes the float to be pushed down the tapered tube. At some point within the length of the tapered section, the unit impact force of the water, reduced by the enlarged section, exactly balances the buoyancy force of the float, which then comes to rest. It has been found that this instrument can be calibrated very closely by towing it through still water, and that for every velocity of flow, within the range of the instrument, there is a corresponding position of the float within the tapered section, which will not vary in successive trials by more than 1 or 2 per cent. By the use of floats of various specific gravities, and tapered tubes of varying inside dimensions, almost any velocity can be measured with the tube. Necessarily the effect of temperature on the viscosity and the density of the water must be considered, although a variation in temperature of only a few degrees has only a small effect. In Plate 11 are shown the calibrations for two of the floats used in the conduct of the bed-load tests.

Definitions and Symbols

Classification of Materials in Transportation:

There exists no universally accepted set of nomenclature for the materials involved in the transportation of debris by floating water. The following definitions have been adopted for use at the U. S. Waterways Experiment Station, and will be followed throughout this paper:

Stream load: All material, either mineral or organic, which is being transported by the stream, whether in solution or by hydraulic traction, hydraulic suspension, colloidal suspension, or flotation.

 \ast Invented by Carl E. Bentzel, Research Assistant, U. S. Waterways Experiment Station. Patent pending.

ŝ

સ્

-24

Plate 10 The Bentzel Velocity Tube

Floating load: That portion of the stream load which is being transported by flotation (e. g., trees and drift).

- Quasi-sedimentary load: That portion of the stream load which is being transported by colloidal suspension or in solution.
- Sedimentary load: That portion of the stream load which is being transported by hydraulic traction or hydraulic suspension (e. g., clay not in colloidal suspension, silt, sand, gravel, boulders, organic material).
- Suspended load: That portion of the sedimentary load which is not in contact with the bed of the stream.
- Bed-load: That portion of the sedimentary load which is in contact with the bed of the stream.
- Saltation: Movement by "jumping"; particles in saltation or particles moving intermittently as suspended load and as bed-load. (No sharp dividing line is intended for this type of movement).
- Stream bed: The non-moving (not necessarily non-movable) material underlying the stream.
- Sediment: Fragmental material deposited by water. In general, both that which has been deposited and that which is still being transported. Specifically, that which has been deposited.
- Consolidated material: Material which cannot be transported without first being disintegrated (e. g., masonry linings, beds of rock).

Bed-load Movement:

The definitions suggested by Kramer were tentatively adopted for use at the Experiment Station, and throughout the experiments each stage of movement was classified according to his definitions. The difficulties encountered by Kramer and other investigators in attempting an accurate classification of movement by visual observation, however, were found to be so pronounced in the early tests that additional definitions were essential. The use of actual measured quantities of material moved was found practicable, since the tilting flume was equipped with a sandtrap which efficiently caught all the material extruded at the lower end of the flume. All the rates of movement, therefore, have been computed in terms of pounds per foot width of flume per hour, dry weight, and this unit is used throughout all the tests.

For purposes of reference, Kramer's definitions of rates of bedload movement are quoted below:

"1. 'None' refers to that condition in which absolutely no geschiebe* particles are in motion.

"2. 'Weak' movement indicates that a few or several of the smallest sand particles are in motion, in isolated spots, and in countable numbers. By countable is meant that by confining the field of observation to, say 1 cm², the particles in motion can be counted by the observer.

 $[\]ast$ The word ''geschiebe'' is the concise German word corresponding to ''bed-load''; literally, ''that which is being shoved''.

"3. 'Medium' movement is used for that condition in which grains of medium size are in motion in numbers too large to be countable. Such movement is no longer local in character. It is not yet strong enough to affect bed configuration and does not result in transportation of an appreciable amount of geschiebe.

"4. 'General' means that condition in which sand grains up to and including the largest are in motion. Since in these experiments, as in general laboratory practice, sand grains above a certain size have been sifted out, this designation has a definite significance. This movement is also not local but general. It is sufficiently vigorous to change the bed configuration, although at lower stages this action takes place only slowly. There is an appreciable amount of material transported with this condition of movement. This condition is termed in this paper the lower limit of usefulness of the sand.

"No higher stages of movement are designated, although increasing intensity might be based upon the quantity of geschiebe movement. Intermediate stages are denoted by (+) plus or (-)minus signs."

Critical Tractive Force:

Critical tractive force is that tractive force which brings about general movement of the bed-load mixture.

Riffles:

Local riffles are those riffles which appear first in isolated sections.

General riffles are approximately uniform in height and length, and are distributed throughout the entire area of the flume.

No attempt will be made to designate riffle stages by size. Kramer bases his riffle classification on the height of riffle as compared with the depth of water which forms it, and classifies as excessive any riffle which is more than 8 per cent of the depth of the water. It has been found at the Experiment Station, however, that all sands of mean grain diameter about 0.5 mm or less have a strong tendency to riffle greatly in excess of this 8-per cent limit. In fact, for some of the finer sands, very little downstream movement of the particles was obtained until the formation of riffles was as high as 20 to 25 per cent of the water depth.

It should be noted, however, that frequent profiles of the bed were taken throughout these experiments, and are shown in Plates 39 to 44. From these plates the size of riffles at any time can be found.

Symbols and Units:

With the exception of the size of sand grain, which is expressed in millimeters, the English system of units was used throughout these experiments. The use of millimeters for the grain size resulted from the fact that the openings in the sieves used in the analyses of the sands are commonly expressed in these units at the Laboratory. Equivalent sizes, in inches, are given throughout this report, however. The selection of a suitable system of notation for a study of this type was extremely difficult. Each experimenter who has worked on the subject of bed-load movement has developed his own set of nomenclature, and difficulties naturally arise when an effort is made to correlate the results from several investigators, because of a lack of uniformity in their systems. The system of nomenclature in Table 2 has been used in these experiments. Occasional deviations will be necessary, when reference is made to previous investigations, and will be noted.

$^{-}\Lambda$	121	.н.	-2
	0.0		<i></i>

INDMENTLATURE AND UNT	N	OMENCL	ATURE	AND	UNIT
-----------------------	---	--------	-------	-----	------

Symbol	General Meaning	Units
0	Discharge	cfs
a	Unit discharge	c f s per ft width
Ď	Denth	Ft
Ă	Cross-sectional area	Sa ft
Ñ	Velocity	Ft. per sec.
$\dot{\mathbf{V}}_{m}$	Mean velocity	- or por 10001
V_s	Surface velocity	"
S	Slope	Non-dimensional
R	Hydraulic radius	Ft.
Т	Tractive force	Lb. per sq. ft.
T_{e}	Critical tractive force	Lb. per sq. ft.
D_k	Depth at general movement,	* *
	visual criterion	Ft.
D_c	Depth at general movement,	
	"model" criterion	Ft.
D_{o}	Depth corresponding to trac-	
	tive force at zero movement	
	as taken from rate-of-move-	
	ment curves	Ft.
t	Time	Sec.
R	Reynolds' number for open	
	channels	Non-dimensional
ν	Coefficient of kinematic vis-	~ •
<u></u>	cosity	Sq. ft. per sec.
C	Coefficient in Chezy formula	$Ft.\frac{12}{sec.}$
n	Roughness coefficient in	
	Manning formula	Ft. 1/6
λ	Roughness coefficient	Non-dimensional
g	Acceleration of gravity	Ft. per sec. per sec.
VV	Kate of bed-load movement	Lb. per ft. width per hr.
ρ_1	Absolute unit weight of sand	Lb. per cu. it.
ρ	Unit weight of water	
a d	Grain size	mm. or in.
$\frac{\alpha_{g}}{\alpha}$	Mean grain size	
	Grain volume	cu. mm. or cu. in.
M	Uniformity modulus, grain	
	distribution	Non-dimensional
k, k1-	Constants	
o (sub-		
script)	Critical or initial value	

Before placement in the flume, each of the materials (with the exception of Sand No. 1, which was used in its natural state) was thoroughly washed, to remove all traces of silt, clay, and other extraneous material, and screened through a 4-mesh sieve, to remove the particles larger than 4.699 mm in size. In the case of the tests on the small gravel, the particles ranged in size from 0.208 mm to 6.680 mm, with about 98 per cent larger than 1.168 mm.

Setting the Slope of the Flume:

The flume was adjusted to the desired slope by regulation of the jack screws on which it is supported. After the main structure itself had been set to the proper slope, the adjustable rails on the sides of the flume were set very accurately to this same slope. In this operation, shots were taken with a level at 2-foot intervals along the rails, to insure that no humps or hollows existed; an accuracy of about 0.002 foot was obtained.

Molding the Bed:

The sand or gravel surface was molded to the exact slope by means of a vertical template so constructed as to slide along the adjustable rails. The material was first thoroughly mixed, to insure a uniform distribution of the particles, then was placed in the flume to a depth of about 2 inches. At the upper and lower end of the flume cement sills had previously been constructed to this same depth, the upper one arranged to provide a smooth transition section from the approach flume. These sills are shown in the longitudinal section of the flume, Plate 5.

The bottom edge of the sliding template was adjusted to the elevation of the cement sills, and then was worked back and forth over the material (all molding was done under water) until a smooth surface of uniform slope was obtained. Care was taken that no ridges or furrows, or isolated large particles, remained on the surface, since they would start the formation of riffles at an unnaturally early stage in the test. A series of photographs showing such unnatural development is presented in Plate 12. The process of molding is illustrated pictorially in Plate 6.

Other Preliminary Steps:

At this stage in the procedure, small samples of material were taken from three locations in the flume, and submitted to the soil mechanics laboratory for mechanical and microscopic analysis^{*}, and for a specific gravity test. The average of these analyses was used as the original on which all tractive force and rate-of-movement calculations were based.

After the holes from which these samples had been taken were filled in and the surface again made smooth, a longitudinal profile of the bed was taken, to provide a check on the molding of the bed and to measure the bottom elevation. These original profiles are shown in Plates 39 to 44, along with the profiles taken later after the formation of riffles. It should be noted that in these plates the original slope of the bed is plotted as a straight, horizontal line.

^{*} The methods of analyzing the materials are described in detail in Part II, page 122.

The Test Proper:

To start the test, the flume was flooded slowly from the lower end, after which the inlet valve above the weir box was opened slightly, and a small quantity of water began to flow through the stilling chamber and into the flume. The tailgate was then manipulated until it was found that uniform flow prevailed throughout the length of the flume. This condition was attained when the needle gage readings on the water surface were the same at all points. After equilibrium of flow conditions had been reached and held for several minutes, a complete set of observations was made and recorded. A discussion of these observations will follow, under the heading "Observations".

At the conclusion of the first run, after all necessary data had been recorded, the discharge was increased slightly by an adjustment of the inlet valve, the tailgate was again manipulated until uniform flow was obtained, as evidenced by like readings of the sliding needle gage at all points, and another complete set of data was recorded. This procedure was repeated, the discharge being increased in successive small increments, until the maximum capacity of the supply pipe was reached. After the conclusion of the test, the flume was set to another slope, the bed was remolded to that same slope, and another independent test was made in a similar manner.

The first run in each test, and several subsequent runs, were with laminar flow in the flume. During this period in which laminar flow was obtained, the discharge in the flume was increased in very small increments, in order to provide complete data on the transition stage between laminar and turbulent flow. The type of flow, whether laminar or turbulent, was determined by observation of the course taken by the solution of potassium permanganate which was injected into the water with the instrument described on page 10. After the flow had passed well into the turbulent range, no further observations were made with the permanganate solution. Typical stream lines indicating laminar flow are shown in Plate 7.

During the first several runs of each test, the sand bed remained smooth, practically as it had been molded at the commencement of the test. After the first ten or so runs, however, the number depending upon the type of sand, slope of bed, etc., small riffles invariably began to appear at isolated points in the flume, and gradually spread over the entire sand bed. It was preferred to have these riffles start at the upper end of the flume and work themselves downstream. The riffles frequently appeared simultaneously at several points, however, and developed in all directions. The general practice was not to interfere with or attempt to control their development, but to let the riffles develop themselves. It was impossible to secure uniform conditions of flow while these riffles were developing, for the reason that the gradually increasing roughness of the bed caused the same discharge to be carried at gradually increasing depths. Hence, no attempts were made to record simultaneous readings of depth, velocity, etc., until this riffling period had been finished. In most of the tests this development required from two to four hours, during which the discharge was kept constant and the tailgate was manipulated as often as was necessary to maintain the slope of the water surface parallel to the original slope.

 $\label{eq:plate-12} P_{\text{ROGRESSIVE}} \text{ Development of Riffles, Caused By Obstruction on Bed}$

After the riffles had spread uniformly over the flume, and had reached a height where they maintained an equilibrium of flow conditions, as evidenced by a constant depth of flow at the original slope, another complete set of observations was taken and recorded, after which the flow was again increased slightly. More time was required to reach an equilibrium for each run after the formation of the riffles, because of the constant change in their size and the resulting slowness of the depth in reaching a constant value. In general, no data were recorded for a run until an absolute equilibrium had been reached.

A check was maintained on the riffle development by the frequent taking of longitudinal profiles of the bed formation. In general, a profile was always taken after the first run following the riffledeveloping period, after every third or fourth run thereafter, and again after the last run of the test. These profiles were plotted over the original profile, to provide a check on whether there was any progressive change in the slope of the sand bed. Plates 39 to 44 contain all of these plotted profiles for all the tests except those of Sand No. 6, during which no observations of this nature were made. It should be noted that the data from several runs were rejected because of the fact that the sand bed showed a progressive change of slope, usually a flattening, induced by a scour at the upper end of the flume and a fill at the lower end.

Shortly before the commencement of riffle formation, isolated sand grains were noticed to be moving, and as the depth of water was increased, this movement increased in intensity. When this movement became appreciable, the sandtrap box, described on page 10, was lowered into the sandtrap, and the sand discharge was determined during a measured time interval. The length of time of collection of the sand varied from about 10 minutes to 1 hour, depending upon the intensity of movement. In general, the longer time intervals were devoted to the lesser movements.

At the end of the run, the sand box was lifted from the trap (see photograph, Plate 6), the water drained off, and the wet sand weighed. A representative sample of the wet material was then placed in an air-tight bottle, and sent to the soil mechanics laboratory for a complete mechanical analysis^{*}. Before the analysis was begun, the weight of the wet sample was obtained, after which the sand was thoroughly dried, then weighed again. The ratio between the dry weight and the wet weight was used in computing the total dry weight of the material caught in the trap.

Sands Nos. 1, 2, 6, and 7 were tested before the construction of the sandfeed machine. Hence it was impossible in these tests to feed sand at a uniform rate at the upper end of the flume; sand was added manually, however, whenever a scour was started at the upper end. In the tests on the other sands the sandfeed was in operation, and it was endeavored to maintain the rate of feeding the same as the rate at which the sand was being caught in the trap. At the higher flows the rate of sand movement was sometimes greater than the maximum capacity of the sand feed; the practice was then to keep a

 $[\]ast$ No mechanical analyses were made of the trapped material in the tests on Sand No. 6, the first that was tested. In the case of Sands Nos. 1, 2, and 7, samples were analyzed only after every third or fourth run. With Sands Nos. 3, 4, 5, 8, and 9, however (the last to be tested), a sample was analyzed after each run during which there was appreciable movement. The method of analysis was the same as that described in Part II, page 122.

constant check on the bed development by means of the profiles, and to end the test whenever it was seen that any appreciable change had taken place.

Observations

Head on Weir:

The head on the weir was derived from a hook-gage reading on the water surface in a manometer cup, which was attached to an opening in the weir box by rubber tubing. The corresponding discharge for this head was determined from the weir rating curve.

Water-Surface Elevation:

The elevation of the water surface was read with the sliding point gage previously described. Before the reading was taken, the tailgate was manipulated to a position where the slope of the water surface was the same as that of the bed; hence, the gage reading of the water-surface elevation was the same at all points in the flume. From the water-surface elevation, the mean elevation of the bed was subtracted to determine the depth of flow.

Temperature of Water:

In the last five series of tests, the temperature of the water was read for each run, from a Centigrade thermometer suspended in the water just above the approach flume. The temperatures in the other tests, those on Sands Nos. 1, 2, 6, and 7, were estimated later from a study of air temperature records of the U. S. Weather Bureau at Vicksburg, and a few temperature records of the reservoir at the Experiment Station. Inasmuch as these sands were tested during the summer of 1933, when the air temperature remained fairly consistently between 80° and 95° F, no serious errors entered the results from the assumption that the air and water temperatures were the same.

Velocities:

The water-surface velocity was obtained from the measurement of the time necessary for a small float to travel a distance of 20 feet in the flume. In every case, this velocity was taken as the average of about five trials. It must be noted that surface velocities were not observed in the tests on Sands Nos. 1, 2, 6 and 7.

Mean velocities were computed from the discharge and crosssectional area.

In the test on Sands Nos. 3, 4, 5, 8, and 9, a complete set of velocity observations was made with the Bentzel tube. Most of these observations were made with the tube directly over the downstream cement sill, an inch or two below the end of the sand section. The use of the tube over the sand itself was found to be impracticable because of the scour which immediately resulted when the tube approached the sand bottom. Velocity measurements were made at the bottom, and at one to three other depths, depending upon the total depth of flow.

Character of Flow—Laminar or Turbulent:

The type of flow, whether laminar, turbulent, or in the transition stage between these general classifications was determined from the course taken by lines of potassium permanganate dye injected into the water.

Sand Movement:

In addition to an attempt to classify the intensity of sand movement according to the visual method, samples of the sand in movement were actually trapped at the lower end of the flume, and the quantity caught during a measured time interval was weighed. In the tests on Sand No. 8, several samples of water were taken from the overflow below the sandtraps, and their parts-per-million content determined. These data were used in a computation of the rate of suspended load movement.

Riffles:

Riffles were classified as local or general, with occasional references to "large" riffles or "sand waves", whose exact meanings would be extremely difficult to define. The principal source of data on the subject of riffles is the series of plates, Nos. 39 to 44, which show the profiles of the bed at frequent intervals in each test.

Profiles:

As previously explained, longitudinal profiles of the bed were taken after the first run following the development of the riffles, and at frequent intervals thereafter. The procedure was to measure with the sliding point gage the elevation of the crest and trough of each riffle along the center line of the flume, and to record each measurement with the corresponding longitudinal location.

Presentation of Data from Experiments

A complete tabulation of the observed data in all these experiments, along with certain corresponding calculated data, such as roughness coefficients, values of Reynolds' number, rates of sand movement, etc., is presented in Tables 8 to 37, pages 57 to 86. In addition, on Plates 24 to 38 will be found a complete graphical presentation of some of these same data, with such information as velocity, rate of sand movement, roughness value, grain size, etc., plotted simultaneously against the depth. A discussion of the interrelationship of these various factors will be found below under "Results". It is believed that the care with which these data were obtained justifies their presentation in full, and that they can be used with confidence by hydraulicians in calculations involving either open-channel flow or sand movement.

Explanation of Tables:

Several of the colums in the tables need some explanation, although most of the headings are self-explanatory. The water temperature, in Column (6), was actually observed in the tests on Sands Nos. 3, 4, 5, 8, and 9, and for the tests on Sands Nos. 1, 2, 6, and 7, was estimated from weather bureau records. The mean velocity, in Column (7), was computed from the discharge and the area of crosssection; the surface velocity, in Column (8), was computed from the measured time interval required for a small float to traverse a 20-foot course; and the bottom velocity, in Column (9), was read from the rating curve for the velocity tube, the argument being the scale reading of the tube when in its lowest position. The velocity measured at this lowest point was actually that at a distance of 0.02 foot above the bottom, this distance being half the diameter of the glass tubing of which the instrument was constructed.

The value of Manning's *n*, in Column (10), was computed from the formula $V = \frac{1.486}{n} R^{2/3} S^{1/2}$, V and R being taken from Columns (7) and (5), and S being the slope used throughout the test. Reynolds' number for open channels, in Column (12), is equal to $\frac{VR}{\nu}$, where ν is the coefficient of kinematic viscosity. The value

of ν was taken from a viscosity curve, the water temperature being used as argument. It must be noted again that these values for Reynolds' number are accurate for the tests on Sands Nos. 3, 4, 5, 8, and 9, in which the water temperature was measured, but that the values for the other tests are accurate only so far as the estimate of water temperature was correct.

The wave velocity, in Column (13), corresponding to the velocity at which flow changes from streaming to shooting, was computed from the acceleration of gravity and the depth. In the tabulations for Sand No. 8, the rates of suspended load movement, as determined from the turbidity analyses, are listed, in addition to the usual bed-load rates. The mean size of the trapped sand, and the uniformity modulus, in Columns (16) and (17), were computed in the manner described on page 5. The tractive force, in Column (18), is the product of the depth, slope, and unit weight of water. The nature of flow, in Column (19), was based on observation of the behavior of the dye injected into the water, and the nature of sand movement, in Column (20), is the visual description of the movement, in conformity with Kramer's rate classification.

It will be noted that in Tables 8 to 10, presenting the results of the flow experiments conducted on the cement bottom, all of the columns concerning the movement of sand have been omitted, but that the column numbers have been made consistent with those in the other tables.

Explanation of Curves Showing Basic Data:

The complete history of developments of the tests is presented in the curves on Plates 24 to 38. On these plates are shown the calculated values of mean velocity, the roughness coefficient n from Manning's formula, the mean size of the grains in motion, and the rate of movement of the sand particles, all plotted against simultaneous values of the depth. (In Plates 35 and 36, the rate of suspended load movement is also shown.) At the top of each plate is the visual history of the test, showing the development of the riffles, and the points at which the flow changed from laminar to turbulent, through the transition stage in which the flow was partly laminar and partly turbulent. The depths at which general movement was observed, according to both the visual criterion and the newly developed "model" criterion (see page 33), are designated as D_k and D_c respectively. The value D_o corresponds to an initial value of tractive force at which the rate-of-movement curve touches the horizontal axis (see page 38).

The development of the riffles is further illustrated in Plates Nos. 39 to 44, in which are shown the plotted longitudinal profiles taken at intervals throughout the tests. Each profile is superimposed upon the line representing the original elevation of the sand bed, and the elevation of the water surface is shown in order that a comparison can be made between riffle height and depth of flow. The slope of bed and water surface is indicated in the dimension at the right, as is the number of the sand in the case of two plates in which the profiles for two sands have been combined.

The results of the analyses of the sand caught in the trap at the lower end of the flume are shown in Plates 45 to 52. The analysis of the material in movement before the development of riffles is indicated by the short dashed lines, while the dash-dot symbol is used for the analysis of the material caught after the development of the riffles. The heavy solid line represents the original material which was placed in the flume, and the table at the top of each division of the plate summarizes the variation of the mean grain size and uniformity modulus.

DU BOYS' EXPRESSION FOR TRACTIVE FORCE

The Waterways Experiment Station has adopted as the basis for these studies involving sand movement the convenient du Boys expression involving the slope and depth of flow. This procedure is in close conformity with the methods used by most European investigators, and has also been widely used in this country during the last few years.

Other possible bases for the formulation of sand movement involve such hydraulic factors as mean velocity, bottom velocity, discharge, discharge per unit width, turbulence, etc. Gilbert, in his extensive investigations of this subject, attempted to correlate sand movement with velocity, and until recently his lead has been followed quite generally in this country. Although the use of velocity as the basis for studies of traction has a sound theoretical foundation, inasmuch as the square of velocity is a parameter of the energy of the flowing water, the measurement of either mean or bottom velocity entails certain practical difficulties which lessen their value as criteria for the movement of bottom materials. In the first place, it has been found that the placing of any velocity-measuring device near the bottom of the flowing stream immediately creates a scour hole in the bed, which in turn changes the velocity and may result in a premature riffle progression throughout the entire length of the flume. Further, while most investigators believe that the bottom velocity is the real controlling factor in the subject of bed movement, no unanimity of opinion has prevailed as to just where this velocity is to be measured. While the actual velocity of the water at the bottom is close to zero, its rate of change with distance from the bottom is very rapid; consequently, any slight error in the vertical location of a measured bottom velocity might result in a

quite appreciable error in its value. The use of mean velocity is subject to these same limitations, except in the case of uniform flow through a flume of known cross-section, where it can be computed from the discharge and area of cross-section. An additional limitation is that the mean velocity does not bear a constant relationship to the bottom velocity, the probable controlling factor in bed-load transportation.

MacDougall^{*} has adopted the unit discharge as the basis for his work. The use of this hydraulic factor results from the development of an expression for tractive power, which can easily be shown to be consistent with du Boys' expression for tractive force.

Inasmuch as it has been found at this Station that the du Boys expression is consistent with experimental results, and since the slope and depth are the hydraulic elements most easily measured in the laboratory, this expression has been adopted. It can be developed in the following manner:

Consider a uniform flow of water of depth D down an incline of slope S. If no resistance were offered to its flow, the increase in kinetic energy of a prism of water 1 foot square and D feet deep, in a short time dt (neglecting differentials of a higher order), would be

$$dE = \frac{m}{2} \left\{ (v + dv) - v^{2} \right\} = mvdv$$

Since $\frac{dv}{dt} = gS$,
 $dE = mgSvdt$, (1)

where m is the mass of the prism of water.

Since it is presumed that uniform flow prevails, hence that there is no increase in the kinetic energy, this increase must be prevented by the action of a force T, acting through the distance v dt. Dividing (1) by v dt, the force is

T = mg SSubstituting $\rho \frac{D}{g}$ for m, this force is seen to be

$$\Gamma = \rho DS$$

(2)

Equation (2), is the familiar du Boys expression for tractive force, expanded by du Boys after observations on the Rhone River, following the theory advocated earlier by du Buat.

The use of this expression as a basis for the formulation of the movement of bed materials has frequently been criticized on the basis that the users of the expression assign the entire value T to the movement of the bed-load. It is fully realized on the contrary that the energy dissipated by a flowing stream is utilized in the following manners:

1. Internal friction and turbulence.

2. Friction of the bed.

3. Friction of the air.

4. Movement of the bed-load.

* "An Experimental Investigation of Bed Sediment Transportation", by C. H. MacDougall.

While it does not appear reasonable to assign the entire value of the tractive force to the last of these four, it does seem reasonable to assume that with a given bed material, its movement will be in some manner proportional to the value of the tractive force, which then can be used as a measure of the bed movement. As will be pointed out later in this report, it has been demonstrated in these experiments that there is a definite relationship between the tractive force and the bed movement. Furthermore, the assumption of this relationship is as reasonable as any attempt to correlate bed movement with velocity or unit discharge, where it must also be assumed that the movement is in some way proportional to the value of these hydraulic elements.

RESULTS OF EXPERIMENTS

General

The primary purpose of these experiments, as originally outlined, was to discover and evaluate, if possible, the laws controlling the movement of bed materials in flowing streams. The two principal problems which grew out of this original purpose were:

- 1. Determination of the value of the tractive force at which movement of a given bed material starts—i. e., "critical tractive force".
- 2. Determination of the rate of movement of a given material at all values of tractive force within the range of values which can be reached in the experiment flume.

Obviously, these two problems are quite intimately related, and in all studies pertaining to either, it was necessary to keep constantly in mind the importance of the other. Also, the assumption was necessarily made that the existing tractive force value was the factor controlling the movement of the bed-that is, that for a given value of tractive force acting on a given bed material, there was a resultant type and intensity of movement, which, after the completion of the studies, could then be predicted with fair accuracy from the value of the tractive force. It will be shown below that this assumption was verified, at least within the range of the values of slope, depth, and width-depth ratios which were used in these experiments. At the present time, however, no attempt will be made to extrapolate these results beyond this range, and it must remain for further studies to determine whether the same verifications can be made for tractive forces equivalent to those found in full-scale rivers and for flumes of different width-depth ratios. Moreover, it must be kept constantly in mind that these experiments were conducted under nearly ideal conditions of uniform flow in a straight channel, and that their results are not necessarily directly applicable to curved channels of varying cross-section.

The discussion of the results will be divided into three general sections: (1) Critical tractive force; (2) rate of movement; (3) miscellaneous incidental results. Included in the latter discussion, will be:

- 1. Variation of Manning's roughness coefficient (n).
- 2. Riffle development.
- 3. Velocities.
- 4. Turbulence criteria.
Critical Tractive Force

Definition:

Critical tractive force is that tractive force which brings about general movement of the bed-load mixture; general movement is that condition in which sand grains up to and including the largest are in motion.

Resume' of Previous Investigations:

Since MacDougall^{*} has presented a thorough summary of the work done by earlier investigators on the subject of sand movement, it is not deemed necessary to include here a duplication of his discussion. It will be sufficient to say that, while investigations of critical tractive force have been made by Krey, Schoklitsch, Eisner, Schaffernak, Kramer, and others, only the latter has developed a practical formula for critical conditions in terms of the sand size and distribution. Most of the formulas developed by the other experimenters contain certain constants, whose determination is almost impossible without first conducting a test on the individual sand in question.

Kramer's experiments, made in Berlin in 1931-32, included tests on three sand mixtures, his general procedure being closely similar to that used at this Station. After analyzing the results of his experiments to determine the general behavior of the mixtures, and verifying the 'law of constant critical force'' (according to this law, the critical tractive force for a given sand mixture is a constant, not a function alone of either depth or slope), he developed the following formula for critical tractive force in terms of the physical characteristics of the sand:

$$T_{c} = \frac{100}{6} \frac{d_{g}}{M} (\rho_{1} - \rho), \qquad (3)$$

in which T_c is in grams per square meter, d_g in millimeters, and ρ_1 and ρ are in grams per cubic centimeter. In English units this equation reduces to the form,

$$T_{c} = 0.00138 \frac{d_{g}}{M} (\rho_{1} - \rho)$$
 (4)

in which T_c is in pounds per square foot, d_g is in inches, and ρ_1 and ρ are in pounds per cubic foot. His method of evaluating d_g and M is explained on page 5, this paper.

Critical Tractive Force Curve:

On Plate 13 are shown the values of the critical tractive forces of Sands Nos. 1 to 8, plotted against the computed values of the expression $\frac{d_g}{M} (\rho_1 - \rho)$. On the same plate are shown Kramer's curve for critical tractive force and the plotted data from which his curve was drawn. In order to follow more closely the plotted points[†], the parabolic curve marked "Modified Curve" has been drawn, and

^{* &}quot;An Experimental Investigation of Bed Sediment Transportation", by C. H. MacDougall.

[†] Kramer considers only points A, M, N, P, Q, as comparable with his own values.

it is suggested in preference to the straight-line expression for the variation of critical tractive force with the characteristics of the sand mixture. The equation for this curve, in English units, is

$$T_c = 0.0038 \sqrt{\frac{d_g (\rho_1 - \rho)}{M}}$$
 (5)

or, in metric units,

$$T_{c} = 29 \sqrt{\frac{d_{g} (\rho_{1} - \rho)}{M}}$$
 (6)

CRITICAL TRACTIVE FORCE IN RELATION TO SAND CHARACTERISTICS, USING VISUAL CRITERION

This equation was derived from the logarithmic plotting of the values for critical tractive force, which is shown (in English units) in Plate 14. It should be noted that both the English and metric units are shown on Plate 13.

Some difficulty was experienced at this Station in determining the values of critical tractive force by the use of the visual method of spotting general movement. This difficulty was especially serious in the tests of Sands Nos. 2, 6, and 7, during which it was necessary to use somewhat turbid lake water. Even after the flume had been connected with the clear water circulating system, however, consistent results were not obtained by the various assistants in charge of the tests. In determining the values of critical tractive force which are plotted on Plate 13, therefore, the tabulated data were studied carefully, and due weight was given to the value of Manning's n, the measured rate of bed-load movement, the designation of the intensity of movement according to Kramer's classification, and the stage of riffle development. A careful analysis of Kramer's data revealed the fact that his tractive force values were all close to the point at which the first riffles appeared on the sand bed (of his twelve points, one was selected after weak riffles had formed, four were selected between the last smooth-bed run and the first run with riffles, and the remaining seven were selected within the last two or three runs with smooth bed); this fact was used as a guide to the selection of the point of general movement in tests where a visual determination produced unusually inconsistent results.

The point at which the critical tractive force was chosen, according to this method of spotting general movement, is noted in each of the tabulations of observed and computed data, Tables 11 to 37. The corresponding depth D_{κ} is noted on the composite graphs, Plates 24 to 38, and the critical tractive force values are summarized in Table 3.

Need for New Definition for General Movement, for Use in Models:

In attempting to apply to model design the critical tractive force values for fine sands found in the study described above, several obstacles were encountered which made it apparent that a lower limit should be placed on the sand sizes to which the visual method of general movement determination should apply. Studies of the data available from these experiments indicate that this lower limit may tentatively be placed at a mean grain size of about 0.6 mm. The following data tend to support this belief, and lead to the conclusion that a new criterion for general movement may be advisable for finer materials, if they are to be used in movable bed hydraulic models:

1. With sands of grain size less than this limiting value, the rate of movement at the point of "general movement" is too small to be appreciable.

2. With some fine sands, even though the rate of movement at the point of "general movement" is appreciable, riffle formations at tractive forces greater than this "critical" value so increase the roughness of the bottom and retard the velocity that there is a sudden decrease in the rate of movement. In the case of the finest sands tested, the rate of movement frequently became zero at tractive forces above "critical". This point, as well as the first one, is brought out in Table 3, column (20), and on the graphs on Plates 24 to 38, where it can be seen that the rate-of-movement curve drops suddenly when the riffles begin to form.

3. In the case of all the sands except Nos. 1 and 9, the sand mixture in movement at the point of "general movement" was not representative of the material of which the bed was molded. The mean size of the sand in motion was much larger than that of the original sand. The exception in the case of Sand No. 1 may be explained by the clay content in the mixture; Sand No. 9, the small gravel, is probably above the range where this condition obtains. This fact is evidenced by the curves showing the analyses of the trapped materials, Plates 45 to 52, where it can be seen that it was not until after a uniform riffling condition had been reached that the analysis of the trapped sand approached that of the original. The progressive change in the mean grain size, and its relation to the riffling stage, are shown on the graphs on Plates 24 to 38. In other words, it would appear that at the point at which, according to the visual method, general movement of the bed material was obtained, actually the material in motion was not representative of the mixture of which the bed was originally molded.

This somewhat paradoxical condition, in which the material first moved by the flowing water was larger in size than the original material, was confirmed in every test of Sands Nos. 2 to 8 by visual observation of the individual particles in motion. In every instance it was noticed that the first particles to begin moving were the larger ones, and that as the depth was increased, more of the smaller began to be moved. It is believed that the explanation for this phenomenon lies in the fact that the larger particles, which protrude a small distance above the general level of the bed, are acted upon by greater velocities than are the finer particles, which fill the interstices between the larger particles. While this vertical distance is very small, the change in velocity at the bottom of the flume is very rapid, and a small difference in vertical location causes a relatively great difference in velocity. At greater depths, however, the increased velocity at the bottom, aided by the increased condition of turbulence, is sufficient to reach and remove the finer particles. Hence, it may be concluded that movement of a fine sand on a smooth bed is a sorting process, and that only after the formation of riffles does the movement become general in the sense that all the particles are moved in about the proportion of their occurrence in the mixture.

This condition, as stated above, was not observed in the tests on the small gravel, in which at the very commencement of movement the mean size of the material in motion was approximately equal to the mean size of the original material. The reason for this probably lies in the fact that a particle's resistance to motion varies as the cube of its diameter, while the distance the particle protrudes above the bed, and the velocity acting on the particle, vary as a much smaller power, probably less than unity. Hence, there must be some limiting size of particle at which the larger sizes no longer move first, and above which the finer materials are the first to be placed in motion. While no data were recorded in these experiments which would tend to locate this limiting size, it is believed that its value is in the vicinity of 0.6 mm.

Suggested New Definition for General Movement:

To answer the need for an evaluation of critical tractive force which can be used in model design, and which has a real meaning through the range of sand sizes smaller than 0.6 mm, the following tentative new definition for general movement has been worked out at this Station.

General movement is obtained when both the following conditions are attained:

1. The material in transportation is reasonably similar in composition to the material composing the original bed.

2. The rate of movement is equal to or exceeds one pound (dry weight) per foot width of channel per hour.

The critical tractive force is still defined as that value of tractive force existing at the time of the commencement of general movement.

It is desired to emphasize the fact that this definition of general movement is intended solely for use in connection with hydraulic models, where sands of mean grain size less than about 0.6 mm are used. In no case is it meant to be extended to include bed-load movement in full-scale streams, or sands larger than the limit stated. It is fully realized that the two specifications do not define a condition of movement which is exactly the same for a sand of mean grain size of, say 0.3 mm, as for another of mean grain size of, say 0.5 mm. It is believed, however, that within the assigned limitations, it defines a condition which is nearly uniform, and which will prove useful in hydraulic model design. Further studies will be made of this subject, and it is hoped that a better definition for general movement, which will satisfy strict theoretical as well as practical considerations, can be developed.

It is understood that this definition can not be applied to a gravel or small stone mixture because of the fact that the movement of only a few isolated large particles might be sufficient to satisfy the 1-pound requirement, even though the movement was not at all general. Through the range of sizes with which this Station is usually concerned, however, it is believed that this condition leads to a usable definition for critical tractive force. The value of 1 pound was derived from experience records at the Laboratory, where it has been found that in a 12-hour cycle of operation of a model of the Mississippi River, which averages about 4 feet wide, a minimum of about 50 pounds of sand must be moved to secure satisfactory development of the model bed.

The fulfillment of the first condition—that the moving material must be similar to the material composing the bed—insures that the value chosen for the critical tractive force is greater than that necessary to produce riffles, and consequently, that there is no retardation in the rate of movement at tractive forces greater than critical. This point is evident from an inspection of the upper curve on the composite drawings, Plates 24 to 38, where it can be seen that the curve for mean grain size of the material in motion approaches that of the original grain size at the point of full development of the riffles.

Evaluation of Critical Tractive Force:

With this definition for general movement (designated the "model" criterion") as a basis, a study was made of the data tabulation in Tables 11 to 37, and the point at which movement became general was selected. The locations of these points are indicated in the tables, and also on the graphs, Plates 24 to 38, by the designation "D_c". The corresponding values of tractive force were then computed and recorded in Table 3, columns (7) to (9), averaged in column (10), and the rates of movement at critical tractive force and the least rate at tractive forces above critical were recorded in columns (11) and (12). The average values from column (10) were then plot-

ted against the corresponding values of $\frac{d_g}{M}(\rho_1 - \rho)$, and the result

is shown in Plate 15, on which are also shown the curve representing Kramer's equation and the revised curve suggested by this Station, using Kramer's criterion for general movement.

Again it is apparent that the product of depth and slope is a usable measure for critical conditions, inasmuch as the values determined from the three slopes were nearly the same for every sand.

The data from which the curve is drawn, representing the apparent trend of these points, are too few to locate the line closely, especially for values of $\frac{d_g}{M}(\rho_1 - \rho)$ of more than 5. The evidence

seems to point out, however, that there is a minimum value of critical tractive force near this value, corresponding to a mean grain size of about 0.6 mm, and that both above and below this size, there is an increase in critical tractive force. This optimum size of particle corresponds very closely to that size below which riffles become appreciable in height.

It will be noticed that the rate of sand movement at the time of commencement of general movement of Sand No. 2 was about 6.0 pounds per foot width per hour, while that of the other sands was about 1 pound. The explanation of this is that the size-of-movinggrains specification was the controlling factor in the determination of general movement of this sand, while in all the others the 1-pound limit controlled its location. In general, the finer the sand, the smaller was the tractive force at the time of riffling, hence at the time when the particles in motion became similar in composition to the molded bed. For the finer sands, then, the 1-pound specification was the last to be satisfied and became the controlling factor in the determination of the value of critical tractive force. With increasing sand size, the appearance of riffles was delayed to higher values of tractive force, and the 1-pound limit was the first to be met. In the case of Sand No. 1, this limit again became the controlling factor, in spite of the general trend just described; it is believed, however, that the clay content of this material served as a binder which held back the larger particles, thereby causing the mean size of the moving particles to approach the size of the original material before the appearance of riffles.

The increase in the critical tractive force values for the finer sands, according to this criterion for general movement, is the exact reverse of the trend indicated by the Kramer formula, which was derived from tests of sands larger than those tested at this Station. It is believed that the explanation for this phenomenon lies in the matter of the riffle development. As can be seen from the profiles, Plates 39 to 44, the finer the sand, the greater was the height of riffles in comparison with the depth of water forming them, and, consequently, the greater the roughness of the bed. At a given depth, the velocity of the water, then, was less for the fine materials than for the coarse, and the movement of the particles was correspondingly less brisk. The value of tractive force at which the 1-pound limit was satisfied increased therefore with decreasing grain size, and since the 1-pound limit was the controlling factor locating the value of critical tractive force for the finer sands, the critical value also increaseed in this manner.

PLATE 15

CRITICAL TRACTIVE FORCE IN RELATION TO SAND CHARACTERISTICS, USING VISUAL AND "MODEL" CRITERIA

The scattering of the points on the curve of Plate 15 is not considered to decrease the usefulness of this evaluation, for these reasons: Sands Nos. 4 and 5, which have higher critical values than seem consistent with the curve, were composed of grains which were much more angular than those composing the other sands, and it is believed that the interlocking effect of the angular grains caused a retardation in their movement. The low value of Sand No. 8, which was also angular, or rather, the high values of Sands Nos. 6 and 7, can be attributed to the probability that some of the moving material in the tests on the latter sands was lost over the tailgate, and that the tractive force corresponding to a 1-pound rate was higher than its true value. This argument is borne out by the fact that the enlarged sandtrap used in the tests on Sand No. 8 caught, at all stages of movement, an appreciable quantity of the sand, which passed over the trap used in the other tests. The possibility is suggested that this portion of the critical tractive force relationship should be represented by two or three nearly parallel curves, each curve joining the

TABLE 3.

CRITICAL TRACTIVE FORCE.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10	(11)	(12	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
					3		By .	'Model'' (Criterion					By	Visual	Criterion			
o.	irsin		ty s	rain*	0,	Cı	itical Tra Lb. per	ctive For sq. ft.	ce**	Rat Move Lb width	e of ement /ft. n/hour		Crit	ical Tract Lb. per s	ive Forc sq. ft.	e**		Rat Mov/ Lb/ft.w	e of ement idth/hour
Sand N	mm	in.	Uniformi Modulu M	Shape of G	Value of $\frac{dg}{M}$ (, (dg in in., ρ_1 , ρ in lb	Slope 0.0010	Slope 0.0015	Slope 0.0020	Average	At Critical Tractive Force	Least at Tractive Forces above Critical	Slope 0.0010	Slope 0.0015	Slope 0.0020	Average	Value from Kramer Curve	Value from U. S. W. E. S. Curve	At Critical Tractive Force	Least at Tractive Forces above Critical
U. S. W. E. S. 1 2 3 4 5 6 7 8 9	$\begin{array}{c} 0.586\\ 0.541\\ 0.525\\ 0.506\\ 0.483\\ 0.347\\ 0.310\\ 0.205\\ 4.077\end{array}$	0.0230 0.0213 0.0207 0.0199 0.0190 0.0137 0.0122 0.0081	$\begin{array}{c} 0.280\\ 0.439\\ 0.539\\ 0.406\\ 0.438\\ 0.643\\ 0.525\\ 0.560\\ 0.566\end{array}$	SA to SR SA to SR SR to R A to SR SA to A SR to SA SR to SA SR to SA	$\begin{array}{c} 8.50 \\ 5.04 \\ 3.98 \\ 5.04 \\ 4.49 \\ 2.20 \\ 2.40 \\ 1.50 \end{array}$	$\begin{array}{c} 0.0077\\ 0.0130\\ 0.0198\\ 0.0213\\ 0.0234\\ 0.0236\\ 0.0228\\ 0.0210\\ \left\{ \begin{array}{c} \text{Slope}\\ 0.0030\\ 0.0570 \end{array} \right. \end{array}$	$\begin{array}{c} 0.0072\\ 0.0180\\ 0.0215\\ 0.0219\\ 0.0230\\ 0.0252\\ 0.0227\\ 0.0210\\ \left\{ \begin{array}{c} Slope\\ 0.0040 \\ 0.0570 \end{array} \right. \end{array}$	0.0081 0.0170 0.0160 0.0222 0.0248 0.0223 0.0246 0.0244 { Slope 0.0045} 0.0600	$\begin{array}{c} 0.0077\\ 0.0160\\ 0.0191\\ 0.0215\\ 0.0237\\ 0.0237\\ 0.0234\\ 0.0221\\ 0.0580\\ \end{array}$	$ \begin{array}{c} 1.0\\ 6.0^{+}\\ 1.0^{+}\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0$	$\begin{array}{c} 1.0 \\ 6.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \end{array}$	0.0084 0.0080 0.0085 0.0080 0.0080 0.0060 0.0070 0.0051 { Slope 0.0030} 0.0570	0.0092 0.0090 0.0090 0.0083 0.0075 0.0060 0.0058 0.0048 (Slope 0.0040) 0.0570	$\begin{array}{c} 0.0107\\ 0.0095\\ 0.0090\\ 0.0090\\ 0.0085\\ 0.0060\\ 0.0070\\ 0.0042\\ \left\{ \begin{array}{c} \text{Slope}\\ 0.0045\\ 0.0600 \end{array} \right. \end{array}$	$\begin{array}{c} 0.0094\\ 0.0088\\ 0.0088\\ 0.0084\\ 0.0080\\ 0.0060\\ 0.0066\\ 0.0047\\ 0.0580\end{array}$	$\begin{array}{c} 0.0117\\ 0.0069\\ 0.0055\\ 0.0070\\ 0.0062\\ 0.0030\\ 0.0034\\ 0.0021\\ 0.0404 \end{array}$	$\begin{array}{c} 0.0112\\ 0.0086\\ 0.0076\\ 0.0086\\ 0.0080\\ 0.0057\\ 0.0060\\ 0.0047\\ 0.0205\end{array}$	2.5† 1.0† 1.0† 1.0† 1.0† 0.02† 0.10† 0.04† 1.0	$ \begin{array}{c} 1.5 \\ 1.0^{\dagger} \\ 1.5 \\ 0.04 \\ 0.10 \\ 0.0 \\ 0.03 \\ 0.0 \\ 1.0 \\ \end{array} $
Kramer I II III	$\begin{array}{c} 0.705 \\ 0.558 \\ 0.800 \end{array}$	$\begin{array}{c} 0.0278 \\ 0.0220 \\ 0.0315 \end{array}$	$\begin{array}{c} 0.358 \\ 0.461 \\ 0.414 \end{array}$		$\frac{8.27}{5.06}$										$\begin{array}{c} 0.0106 \\ 0.0080 \\ 0.0098 \end{array}$	$\begin{array}{c} 0.0114 \\ 0.0070 \\ 0.0112 \end{array}$	$\begin{array}{c} 0.0110 \\ 0.0086 \\ 0.0109 \end{array}$		

3 3

* See Plate 4 and pages 5-6. ** Computed from du Boys' expression. † Approximate value.

36

points corresponding to sands of the same angularity of grains. Although the data from these experiments are not numerous enough to establish this theory, future studies may serve to prove or disprove its merits.

Rate of Bed-Load Transportation

A knowledge of the rate of transportation of bed-load is as important in calculations concerning changes in the configuration of stream beds as is the knowledge of the stage at which bed movement begins. In the operation of hydraulic models with movable beds, for instance, it is essential that the material composing the bed of the model be moved at all stages corresponding to those during which there is movement in nature, and it is likewise important that the movement in the model be quantitatively in some known proportion to the rate of movement in the full-scale stream. Hence, some knowledge of the laws governing the rates of movement of both the model stream bed and the natural stream bed is essential to the proper interpretation of model results. Likewise, in the design of regulatory works for rivers, the subject of sedimentary load transportation sometimes is as important as the hydraulics of the problem.

Resume' of Previous Investigations:

Several investigators, including du Boys, Schoklitsch, Gilbert, Eisner, and MacDougall have contributed to the knowledge of the subject of the rate of bed-load movement, but none has as yet succeeded in so formulating the movement of sand that a mechanical and physical analysis of the material is sufficient to predict accurately its behavior when acted upon by a flowing stream.

MacDougall^{*} has contributed the latest information on the subject, as a result of his experiments at the Massachusetts Institute of Technology, and has arrived at an approximate method for predicting the movement of bed-load from an analysis of the material. His conclusions are based on observations of only three sand mixtures, however, and his final curves are drawn from only three points.

Basis for Formulation of Rate of Movement:

There is a noticeable similarity in the general form of the equations derived by various experimenters to express the rate of movement of bed-load in terms of the hydraulic elements. Almost all of them attempt to relate the rate to some function of slope and excess discharge or excess depth, with an experimental constant to take care of the variation in the sand mixtures. Gilbert has attempted to show the individual effect of each of the factors, velocity, slope, and discharge, by keeping the other factors constant, and has presented several expressions which show these relationships. Eisner has included in his formula a factor to express the friction on the bed. MacDougall has derived three similar equations in terms of discharge, one for each of his sands, and has then attempted to evaluate his constants in terms of the physical characteristics of the materials.

U. S. Waterways Experiment Station Formulation of Rate Movement:

After a thorough study of the rate-of-movement data accumulated in the experiments, it was found that the following empirical

^{* &}quot;An Experimental Investigation of Bed Sediment Transportation", by C. H. MacDougall.

equation expressed the relationship existing between the hydraulic factors and the rate of bed-load movement after the formation of riffles:

$$W = \frac{1}{n} \left(\frac{DS - D_o S_o}{k_1} \right)^m \tag{7}$$

In equation (7), W is the rate of bed-load movement for a given sand mixture resulting from a given set of hydraulic conditions, DS is the corresponding product of depth and slope, n is Manning's roughness value as computed for the given conditions, and k_1 and m are parameters whose values are dependent upon the physical characteristics of the bed-load material (see Table 2, page 18, for explanation of units). D_0S_0 is the value of the depth-slope product for the given sand mixture at the time of commencement of movement, as determined from the linear plot of Wn against DS (see Plate 16).

As stated above, equation (7) is an empirical expression derived from the study of over 275 sets of observations of bed-load movement rates made after the formation of riffles, in addition to about 500 observations made before and during their formation. While the empirical nature of the derivation of the equation makes it necessary to limit its application to the range of values of slope, depth, and bed-load characteristics used in these experiments, the mass of data and the consistency of the results seem to verify the validity of the expression within the proper limitations.

The general form of the equation is seen to conform with the du Boys theory of tractive force, in which the bed-load movement is shown to be dependent upon the product of depth, slope, and the density of the water. The inclusion of the roughness value n serves to relate the tractive force value with the velocity. This factor was necessary because of the greater relative bed-load movements at the higher values of slope x depth, where the riffles became smoothed out and the movement of the sand particles became uniformly distributed over the bed. This factor serves to bridge the gap between movement in dunes and the next stage of transportation, that of uniformly distributed movement.

As will be shown below, the value of the parameter m is very nearly constant. The parameter k_1 which varies within narrow limits, is of extremely complex dimensions, embodying the composite effects on bed-load rate of such factors as mean grain size, distribution of grain sizes, voids ratio, angularity of grains, specific gravity of material, density of liquid, viscosity of liquid, degree of turbulence, width-depth ratio of flume, etc.

The nine logarithmic plottings of Wn against (DS - $D_0 S_0$), from which equation (7) was derived, are reproduced in Plates 17a to 19c, and the range of values of parameters k_1 and m, as well as those of n and $D_0 S_0$, are summarized in Table 4. The nine curves are shown together for comparison on Plate 20.

TABLE 4

Value of Constants in Expression W = $\frac{1}{n} \left(\frac{DS - D_o S_o}{k_1} \right)^m$

Sand No.	d _g mm	М	Slope	Range of of	values n	$D_{o}S_{o}$	k 1	m
1	0.586	0.280	$\begin{array}{c} 0.0010 \\ 0.0015 \\ 0.0020 \end{array}$.0112 to .0116 to .0118 to	.0118 .0124 .0128	0.000100	0.00063	1.5
2	0.541	0.439	$\begin{array}{c} 0.0010 \\ 0.0015 \\ 0.0020 \end{array}$.0120 to .0124 to .0132 to	.0132 .0143 .0144	0.000095	0.00061	1.6
3	0.525	0.539	$\begin{array}{c} 0.0010 \\ 0.0015 \\ 0.0020 \end{array}$.0146 to .0165 to .0132 to	.0193 .0232 .0188	0.000270	0.00046	1.6
4	0.506	0.406	$\begin{array}{c} 0.0010 \\ 0.0015 \\ 0.0020 \end{array}$.0152 to .0184 to .0140 to	.0188 .0248 .0260	0.000300	0.00049	1.7
5	0.483	0.438	$\begin{array}{c} 0.0010 \\ 0.0015 \\ 0.0020 \end{array}$.0166 to .0170 to .0178 to	.0194 .0260 .0260	0.000350	0.00058	1.5
6	0.347	0.643	$\begin{array}{c} 0.0010 \\ 0.0015 \\ 0.0020 \end{array}$.0195 to .0190 to .0184 to	.0212 .0242 .0250	0.000280	0.00100	1.8
7	0.310	0.525	$\begin{array}{c} 0.0010 \\ 0.0015 \\ 0.0020 \end{array}$.0214 to .0218 to .0206 to	.0238 .0252 .0272	0.000250	0.00110	1.7
8	0.205	0.560	$\begin{array}{c} 0.0010 \\ 0.0015 \\ 0.0020 \end{array}$.0176 to .0236 to .0180 to	.0296 .0276 .0292	0.000260	0.00066	1.6
9	4.077	0.566	$\begin{array}{c} 0.0030 \\ 0.0040 \\ 0.0045 \end{array}$.0164 to .0162 to .0164 to	.0172 .0165 .0193	0.000940	0.00060	1.6

Relation of rate of Sand Movement to Depth, Slope, and Roughness

Critique of Equation (7):

It will be noticed from Table 4 that the values of the exponent m are confined to a narrow range, from 1.5 to 1.8, and this same fact is evidenced in the composite logarithmic plot (Plate 20), where it can be seen that all nine of the lines are very nearly parallel. Furthermore, the values of k_1 fall within the small range from 0.00046 to 0.00110, and with the omission of Sands Nos. 6 and 7, fall between 0.00046 and 0.00066. It is believed possible that the same explanation may be offered for these high values of k_1 for the two sands that was offered for the high values of critical tractive force for the same sands—i. e., that not all of the same was caught in the trap, and that actual values of W should be somewhat larger than their recorded values. It will be seen that an increase in each W-value, with its corresponding effect on Wn, would serve to move the logarithmic curve down and to the right, and would reduce the value of k_1 .

Comparison of Rates of Movement of Sands Tested-Logarithmic Plot

Whether the effect on k_1 would be large enough to bring the values for Sands Nos. 6 and 7 into the range of values for the other sands cannot be said, but it can be said that the effect would be in the proper direction. Hence, it may be found possible, with further study, to express the rate of movement for all sands by an equation similar to (7), in which the values of m and k_1 will be constant, and the only variables will be the values of D_0S_0 and n.

Little consistency has been found in the manner of variation of the $D_o S_o$ -values. An attempt was made to plot the values against corresponding values of $\frac{d_g}{M}(\rho_1 - \rho)$, a procedure parallel to that used in the study of critical tractive force, but no more than a general trend could be discovered from the somewhat scattered positions of the plotted points. It must be realized, however, that these values have little real meaning, and are only the points determined from the extension of the rate curves to the horizontal axis. Their primary use is in the equation, and it is not intended to mean that their values correspond to the actual commencement of movement of the bedload. Actually there is a rather wide scattering of the plotted points at the low values of rate of movement, and the value of $D_0 S_0$ can be chosen from a range having a variation of as much as 15 per cent.

It is believed, however, that there is a definite relationship between the values of D_oS_o and the physical properties of the sand mixture, and that later studies will disclose it. The preliminary plot discussed in the preceding paragraph showed a close similarity in its general form to the curve (Plate 15) for critical tractive force according to the "model" criterion for general movement. It seems reasonable that there should be such a similarity, since there is a close relation between the 1-pound limit for general movement and the value of D_oS_o . Probably the main reason for the discrepancy between these two curves is that the critical tractive force values were chosen from the tabulated rate values, which tend to disperse at the bottom of the curves, while the D_oS_o values were taken from the curves themselves.

Equation (7) can be expressed in the following form, which includes the results from the eight sands and the small gravel:

$$W = \frac{1}{n} \left(\frac{DS - [0.000095 \text{ to } 0.000940]}{[0.00046 \text{ to } 0.00110]} \right)^{-1.5 \text{ to } 1.8}$$
(8)

With the omission of the results from the small gravel, equation (8) becomes:

$$W = \frac{1}{n} \left(\frac{DS - [0.000095 \text{ to } 0.000350]}{[0.00046 \text{ to } 0.00110]} \right)^{-1.5 \text{ to } 1.8}$$
(9)

The rate-of-movement curves on the composite graphs, Plates 24 to 38, have been drawn to conform with the logarithmic plots on Plates 17a to 19c. The value of Wn corresponding to each selected value of DS, as read from the logarithmic curve, was divided by the n-value corresponding to that value of DS, as read from the composite graph, and the resulting value of W was used in determining the location of the curve on the latter sheet. From an inspection of these curves, it will be seen that they follow the points very closely. The test of Sand No. 2 at slope 0.002 presents the only inconsistent results in the entire series, in that the value of D_c is less than that of D_o , and the curve does not closely follow the plotted points. The first discrepancy is explained by the fact that D_e was chosen from the individual rate points, while D_o was determined from the average curve for all three slopes. The probable explanation for the second inconsistency is that the experiment was conducted too rapidly, and that a real equilibrium between riffle conditions and discharge was not reached.

Method of Using Equation (7):

In order to demonstrate the method suggested for using the equation for the rate of movement, a hypothetical example will be worked out. Suppose that it is desired to determine the rate of movement of Sand No. 4 at a slope of 0.0012 and a depth of 0.417 feet. The product D and S is thus 0.0005. From Plate 29, the roughness value of 0.5 depth, corresponding at slope 0.001 to a DS-product of 0.0005 is 0.0155. From Table 4, m is seen to be 1.7, $D_o S_o$ is 0.0003, and k_1 is 0.00049. Substituting these values in the general form of equation (7),

W =
$$\frac{1}{0.0155} \left(\frac{0.0005 - 0.0003}{0.00049}\right)^{-1.7}$$

or, W = 14.1 lbs. per foot width per hour.

The experimental values for the three slopes, at corresponding DS-values, are 14.6, 11.3, and 11.2 lbs. per foot width per hour, respec-

tively. Thus it is evident that the formula gives results which are accurate to within about 25% for all three slopes. The *n* values for the two higher slopes were 0.0186 and 0.0210, respectively, and had they been used in the computation instead of the lower value for the slope of 0.001, the computed rate would have been closer to the lower experimental value.

If it is desired to determine the rate of movement of a sand different from those tested, the results will depend on the accuracy with which the values for m, n, k_1 , and D_0S_0 are estimated. It is believed, however, that if the sand is within the range covered by these experiments, these constants can be evaluated from a study of Table 4, and the results will be reasonably accurate.

Limitations of Equation (7):

It is not intended to submit equation (7) as the final solution to the problem of bed-load movement, and it is suggested that it be used with caution. Its use must be limited, of course, to sand mixtures which are within the range of sizes covered by the materials used in these experiments, and to slopes not greatly different from the range between 0.001 and 0.002. Further, the highest values of slope-times-depth which were obtained were about 0.0008, and it is not recommended that the results be extrapolated beyond that value.

The use of this equation, then, for computations involving fullscale river flows, is hardly possible. In a river like the Mississippi, the slope is much flatter than the lowest slope used in the experiments, but the average depth is sufficiently great to produce a depthslope product of a least double the value of 0.0008. Further, while this product served as a good measure of bed-load movement through the narrow range of slopes used in the experiments, it remains to be proved that its use with extremely flat or extremely steep slopes is also possible. Lastly, it must be remembered that these results were obtained with uniform flow in a straight flume, and that the relationship between bed-load movement under these ideal conditions and that under the usual conditions of curved channels of varying cross-sections has not yet been established.

Variation of Rate with Grain Size:

Comparative curves showing the rates of movement of all the sands after the development of riffles are shown in Plate 21. It will be noticed that the rate of movement is greater with the larger sands, except in the case of Sand No. 9, the small gravel.

The explanation for this condition again lies in the riffle development. The fine sands, through the range of tractive force values when the riffles were of appreciable height, were retarded in their movement, while the coarser materials, retarded to a lesser extent, were moved at greater rates.

After the smoothing out of the riffles, however, the increase in the rates of the fine sands was much more rapid, and at high values of tractive force the curves for the fine materials tended to cross those for the coarse mixtures, showing greater rates of movement at given values of tractive force.

Variation of Manning's Roughness Coefficient (n)

The value of Manning's roughness coefficient n, as computed from the Manning formula for open channel flow, has been recorded for each run in Tables 8 to 37, and all the values have been plotted against depth on the composite graphs, Plates 24 to 38.

Applicability of the Manning Formula:

The fact that the Manning formula can be used to advantage in these studies is well demonstrated from the shape of the Manning's n curves on Plates 24 to 38, and especially those on Plate 24, wherein are presented data from the flume both with sand bottom and with cement bottom. On the latter plates it can be seen that the computed value of n remains at a nearly constant value very close to 0.01, throughout the complete range of depths which were used. For the sand bottom, on the other hand, n remained nearly constant so long as the bottom remained smooth, at a slightly higher value than the 0.01 found for the cement bottom.

Some caution must be applied to the use of the actual values of n computed in these experiments, for the reason that the side roughness was not the same as the bottom roughness. The sides of the flume had a smooth surface of neat cement, exactly like the bottom in the tests made without sand in the flume, and it was not believed practicable to roughen the sides to conform to the roughness of the sand bed. This equal roughness would have been especially hard to achieve after the formation of riffles. While the usual conception of Manning's n is that it represents the roughness of the bed, actually it is a resistance factor which must include such other factors in addition to roughness as curvatures, eddies, and changes in bed configuration. In these computations, therefore, it must be considered that the n-values represent the resistance to flow of a channel with a smooth side surface and a bottom of variable roughness.

It must also be noted that the Manning formula applies only to turbulent flow. The values of n have been computed for the laminar flow range, and have been plotted, to illustrate the point that they are meaningless in this range. A dashed line is drawn through these points, to distinguish them from the points computed from turbulent conditions.

Variation in Values of n:

The range of *n*-values encountered in these experiments is summarized in Table 5. The average value for the cement bottom, 0.0097, checks very closely the value of 0.010 given by King^{*} for a neat cement surface under best conditions. The average value for all the sands for a smooth bottom is 0.0107, close to the value of 0.011 given by King for a neat cement surface under good conditions. The value of 0.016 for the small gravel is nearly the same as the value King gives for a cement-rubble surface.

With a riffled bottom, the *n*-values show a great variation, from a minimum of 0.0112 in the case of Sand No. 1 to a maximum of 0.0287 for Sand No. 8. It is evident, however, that the *n*-values

^{*} King, "Handbook of Hydraulics".

have the same general trend followed by the riffle sizes—i. e., the finer the sand, or the larger the percentage of fines in the sand, the larger will be the *n*-values. In the case of Sands Nos. 1 and 2, where the riffles were very small, the *n*-values on the riffled bed were only about 0.001 higher than on the smooth bed. With the finer materials, however, the *n*-value for the riffled bed frequently was more than double its magnitude for the smooth bed.

Relation of Manning's n and Rate of Sand Movement:

The rate of movement of the sand is very closely related to the value of Manning's n, which is determined principally by the size and shape of the riffles. This fact was brought out in the discussion of Rate of Bed-load Transportation, where it was shown that the in-

TABLE 5

Sand	J	Manni	ng's n	Morinarm
No.	mm	Average for Smooth Bottom	Maximum for Riffled Bottom	Change in n
1	0.586	0.0102	0.0112	0.0010
2	0.541	0.0115	0.0120	0.0005
3	0.525	0.0117	0.0207	0.0090
4	0.506	0.0110	0.0270	0.0170
5	0.483	0.0110	0.0243	0.0133
6	0.347	0.0099	0.0233	0.0134
7	0.310	0.0100	0.0254	0.0154
8	0.205	0.0103	0.0287	0.0184
9	4.077	0.0160	0.0173	0.0013
Cemen	t bottor	n 0.0097		

Summary of Computed Values of Manning's n

clusion of n in the rate formulation tended to reconcile the rates at high discharges to those at lower discharges. In general, the rate of movement varies inversely with the value of n. Lacking enough information to determine what power of n should be used, it was assumed that the first power sufficiently covered the effect of the roughness of the flume.

Riffle Development

The several manners in which sand is transported by traction have been described in detail by Gilbert*, who has conducted the most comprehensive investigation of the subject, and by MacDougall**. Briefly summarized, these modes of transportation are:

(1) Movement on a smooth bed. This movement begins at a definite stage when the tractive force reaches a certain value, dependent on the characteristics of the bed material.

 ^{* &}quot;Transportation of Debris by Running Water", by Grove Karl Gilbert, U. S. G. S. Professional Paper 86, 1914.
 ** "An Experimental Investigation of Bed Sediment Transportation", by C. H. MacDougall.

(2) Movement in "dunes", or riffles which progress downstream. With this type of movement, the individual particles are moved up the upstream face of the dune, are rolled over its crest, and are deposited at the foot of the slope, resulting in the typical downstream movement of the riffle. With increasing depth, these riffles increase in size, until the beginning of the next stage of movement.

(3) Uniformly distributed movement, in which the riffles formed in the preceding state are smoothed out, and the bed be-

PLATE 22 TYPICAL RIFFLE FORMATIONS Upstream Views Top, left: Sand No. 2, after run 7, slope 0.0010 Top, right: Sand No. 1, after run 17, slope 0.0025 Bottom, left: Sand No. 3, after run 30, slope 0.0025 Bottom, right: Sand No. 4, after run 32, slope 0.0020

comes approximately plane, although somewhat irregular in appearance. This stage is reached at a point close to that at which the flow changes from streaming to shooting.

(4) Movement in "anti-dunes", in which, as the term implies, there is an upstream progression of riffles. In this stage of movement, there is a scouring on the gentle downstream slope of the riffle, and a deposit on the steeper upstream face of the next riffle. This anti-dune stage occurs only with shooting flow, and is seldom observed in nature.

Most of the movement in these experiments fell in the first two classifications, with a tendency at the highest stages toward the third classification, (see Plate 43, Sand No. 8). None of the tests extended into the anti-dune stage of transportation.

Variation in Riffle Size with Type of Bed Material:

In general, it was found that the size of the riffles increased as the percentage of fine material in the mixture increased. Sands Nos. 1 and 2, for instance, the two coarsest sand mixtures tested, developed very low riffles, and their effect on the roughness of the bed was hardly noticeable. This fact can be verified from an inspection of Plates 25 to 27, where the values of Manning's n increase very little as the riffles develop. The actual size of the riffles can be measured from the profiles plotted on Plates 39 and 40. Sands Nos. 6, 7, and 8 (the finest mixtures), on the other hand, developed riffles which were sometimes as high as 30 per cent of the depth of water forming them, and which more than doubled the roughness value of the bed.

Typical riffle formations for four of the mixtures are pictured in Plate 22, and the exact profiles for all the mixtures are plotted on Plates 39 to 44.

Tractive Force Value at Appearance of Riffles:

In Table 6 the average tractive force value existing on the last smooth bed run, immediately before the appearance of riffles, has been listed for each of the sands. Each of these values is the average for the three slopes, but it was found that the individual values were never greatly different from the average. According to the table, the coarsest sand, No. 1 (excluding the small gravel), was the slowest to riffle, the finest sand, No. 8, was the quickest, and between these extremes the general tendency was for a more rapid riffle development as the grain size decreased. This fact was verified in every case by visual observations, from which the conclusion was made, by the laboratory assistants in charge of tests, that the fine sands riffle more easily then the coarse.

TABLE	6
-------	---

VALUE OF TRACTIVE FORCE AT APPEARANCES OF RIFFLES

Sand No.	1	2	3	4	5	6	7	8	9
Mean Grain Size, mm.	0.586	0.541	0.523	0.506	0.483	0.347	0.310	0.205	4.077
Tractive Force at Last Smooth Bed Run (Lb. per Sq. Ft.)	0.0104	0.0105	0.0095	0.0098	0.0084	0.0058	0.0060	0.0047	0.0270

Average of Values for Three Slopes

Velocities

A very comprehensive series of velocity observations, including mean, surface, and bottom values, and velocities at various depths, was taken during the course of these experiments, and the data are presented in tabular form in Tables 8 to 37. The mean velocities have been plotted against the corresponding depths on Plates 24 to 38, and a number of the vertical velocity distributions are shown in Plate 23.

Mean Velocities:

The variations in mean velocities are best illustrated in the curves on the composite graphs, Plates 24 to 38, in which they have been plotted against depths. On each one of these curves it will be observed that a straight-line relationship exists between velocity and

depth through the laminar flow range, while at the beginning of turbulent flow the curve assumes a parabolic shape, which it retains until the commencement of riffle formations. This break in the curve between the straight line and the parabolic section very closely checks the observed transition between laminar and turbulent flow.

The next break in the velocity curve occurs at the point where the riffles commenced to form. At this time the roughness of the bed was very suddenly increased, the velocity retarded, and the depth increased for the same discharge through the flume. In most of the tests, including those on the finer materials, the velocity was actually decreased at this point, owing to the size of the riffles which were formed. In the tests on Sands Nos. 1, 2, and 9, however, there was no actual decrease in the velocity, only a retardation in the rate of increase of the velocity with depth. The severity of the break at this point necessarily conforms closely to the change which occurs in the curve of Manning's n values, and is a function of the size of the grains in the sand mixture.

A third change in the shape of the velocity curve occurs at the point when the riffles become smoothed out, at high flows nearing the shooting flow range. At this point the velocity begins to increase at a greater rate, owing to the reduced roughness of the bed.

Bottom Velocities:

In the tests on Sands Nos. 3, 4, 5, 8, and 9, the last to be performed, it was attempted to secure measurements of bottom velocities (using the Bentzel velocity tube), for the purpose of correlating if possible, these readings with the rate of bed-load movement. Several practical difficulties arose, however, and while it is believed that the values of the readings themselves are nearly correct, it is not certain that they are representative or consistent readings which could be duplicated in repeat tests.

In the first place, as pointed out earlier in the report, the placing of a measuring device close to a sand bed which is moving or on the verge of moving invariably results in a scouring below the instrument. This scouring may result in the development of a progressive riffle formation, and is certain to change the velocity distributions at the bottom, thereby making the reading itself no longer representative of normal conditions.

Secondly, if riffles have already formed, the velocity at the bottom is extremely variable, due to the existence of rollers and eddies. If the measurement is made at the crest of the riffle, the velocity will have a maximum value, but if the instrument is placed in one of the troughs, the reading will be much less, and may even be negative. In order to reduce this effect, and to eliminate the forming of scour holes, the velocity tube was usually placed over the concrete sill at the lower end of the flume, about an inch downstream from the sand bed, and an average of several readings across the flume was taken as the most practical value for the bottom velocity.

As previously indicated, there was little success in the attempt to correlate bottom velocity and sand movement. The values which were obtained from the experiments are recorded in full in Tables 8 to 37, however, where they are available for reference.

Surface Velocities:

Measurements were made of surface velocities, in addition to bottom velocities, in the tests on Sands Nos. 3, 4, 5, 8, and 9. These values were all plotted against simultaneous values of mean velocity, and it was discovered that a straight line could be drawn through the points, for all the tests on smooth sand beds or cement bottom. The equation of this line was approximately $V_m = 0.90V_s$. After the formation of riffles, the relationship was not so definite, although an equation of the form $V_m = 0.85V_s$ would satisfy most of the points, within a reasonable percentage of error.

Vertical Distribution of Velocities:

In Plate 23, a series of vertical velocity distribution curves is given for Sand No. 3, with points selected from several runs both before and after the formation of riffles. The general shape of all the curves is the same, with a nearly uniform increase in the velocity from bottom to top. At the time of riffle formation, the same phenomenon is observed for the velocities at all depths—a marked decrease occurs, followed by a gradual increase as the depth becomes increased.

Turbulence Criteria

In each of the tests except those with Sands Nos. 1 and 6, observations were made of the type of flow, whether laminar or turbulent, and special attention was paid to the transition stage between these two types. As explained in detail under Procedure of Experimentation, these determinations were made from observations of the path taken by a stream of potassium permanganate solution which was injected into the water.

The values of Reynolds' number for open channel flow and of the VR-criterion for turbulence (the latter value is similar to the Reynolds' number, lacking only the factor for change of viscosity with temperature, and is conveniently used when the temperature is nearly constant), defining the transition from laminar to turbulent flow, are given in Table 7. The values given in the table were taken from the last run in which the flow was partly laminar. It was found impracticable to use the values for the first turbulent run, since they sometimes were too far into the turbulent range to define its lower limit.

The maximum value of Reynold's number for open channels at which some laminar flow was observed was 1970, and the corresponding value of VR was 0.024. From these observations it may tentatively be concluded that turbulence will exist in a flume if the value of Reynolds' number is about 2500 or more, or if the corresponding VR-value is about 0.030 (assuming the coefficient of kinematic viscosity at an average value of 1.2×10^{-5}).

As previously stated by this Station, turbulence in a hydraulic model is insured if the product of depth and velocity is greater than 0.02. The criterion of depth and velocity is very similar to that of hydraulic radius and velocity, inasmuch as the hydraulic radius is almost equal to the depth. The two values, 0.02 for the VD-product in a model, and 0.03 for the VR-product in a flume, are not inconsistent, however, since the model, with its bends, irregular crosssection, and greater roughness, will produce turbulence at lower values than will the comparatively smooth flume. The fact that the roughness, or resistance to flow, tends to hasten the turbulent condition is indicated by the results on Sand No. 9, the small gravel. According to the table, the VR-product at the last run in these tests which was partly laminar was 0.003, only one-tenth the value suggested in the preceding paragraph as a safe value to insure turbulence. This material had a Manning's n value of about 0.016 before the appearance of riffles, as compared with the usual values of about 0.011 for the other sands.

	R	eynolds' Nu Flow Partly	mber at Las ' Laminar*	t	VR – Value at Last Flow Partly Laminar*							
Sand No.	Slope 0.0010	Slope 0.0015	Slope 0.0020	Maximum	Slope 0.0010	Slope 0.0015	Slope 0.0020	Maximum				
1	+											
2		1180	860	1180		0.011	0.008	0.011				
3	990	960	880	990	0.012	0.011	0.010	0.012				
4	1380	1380	1970	1970	0.016	0.016	0.024	0.024				
5	1300	940	850	1300	0.016	0.011	0.010	0.016				
6	t											
7	1880	1610	1000	1880	0.017	0.015	0.009	0.017				
8	1810	1160	1200	1810	0.021	0.014	0.014	0.021				
9	$\left\{ \begin{matrix} \mathrm{Slope} \\ 0.0030 \\ 310 \end{matrix} \right\}$	$\left\{ { {\rm Slope}\atop{0.0040} \atop 290} \right\}$	${ {\rm Slope} \atop {0.0045} \atop 180}$	310	$\left\{ \begin{matrix} \mathrm{Slope} \\ 0.0030 \\ 0.003 \end{matrix} \right\}$	$\left\{ \begin{matrix} Slope \\ 0.0040 \\ 0.003 \end{matrix} \right\}$	$\left\{ \begin{matrix} \text{Slope} \\ 0.0045 \\ 0.002 \end{matrix} \right\}$	0.003				
Ce-	${\rm Slope \atop 0.0005}$	${\rm Slope \atop 0.0010}$	${ {\rm Slope} \atop 0.0015 }$		${ {\rm Slope} \atop 0.0005 }$	${\rm Slope \atop 0.0010}$	${{\rm Slope}\atop{0.0015}}$					
ment Bed	1080	1050	1170	1170	0.012	0.012	0.013	0.013				

TA	BI	Æ	7

VALUES OF REYNOLDS' NUMBER AND VR-TURBULENCE CRITERION AT CHANGE FROM LAMINAR TO TURBULENT FLOW

 * Values taken from last run in which flow was partly laminar. The next run in each case was entirely turbulent.
 † No observations.

PROBABLE FUTURE STUDIES OF BED-LOAD MOVEMENT

Emphasis must be placed on the fact that these studies are not intended to be the final answer to the problem of bed-load movement. Accordingly, plans are being made at the Waterways Experiment Station for a continuation of these experiments, with the hope that more information will be obtained and made available to hydraulic engineers who are concerned with this subject.

The staff members at the Station are of the opinion that the rate of movement of bed-load is as important a factor in these studies as the critical tractive force, especially so far as it concerns the design and operation of hydraulic models, and the interpretation of their results. In most rivers, such as the Mississippi, there is movement of the bed at all stages, including the lowest; hence, the determination of the critical tractive force of the material composing the bed is not so important as a knowledge of its rate of movement at all stages. An exception to this condition may occur in some instances, however, and the critical tractive force may become the important factor. An example of this is found in certain upper reaches of the Savannah River, in which there is little or no movement of the bed at low stages. At higher stages, however, the movement is appreciable, and the determination of the stage at which the movement begins is essential.

One of the aims of the future studies will be the elimination, or partial elimination, of riffles in movable bed models. While the formation of riffles in the sands in use in models at the Station has been troublesome at times, it is not believed that they have been so severe as to vitiate the results of the studies. Nevertheless, the elimination of large riffles will make for easier operation of the models, and will to some extent reduce the element of judgment necessary in the interpretation of the results. The present studies have indicated that there is little riffle formation with sands of about 0.6 mm mean grain size, and that the critical tractive force, using the "model" criterion for general movement, is a minimum at about this same grain size. Hence, the first efforts will be be to mix a sand of about this size, having a very small percentage of fine grains.

Another step that must be taken is the study of the relation between the flume results and the results under corresponding conditions in a model having the complicating factors of bends, changing cross-sections, etc. Until such a time as this step is taken, flume results must be taken as indications only, comparable only within themselves, and applicable only with careful judgment to hydraulic models.

The final logical problem to be faced is that of the determination of rates of movement and critical tractive forces for materials composing the beds of full-scale rivers, and the relation between these full-scale phenomena and the results of flume observations. Some work has been done on this subject, by the Mississippi River Commission and various others in this country, and by several observers in Europe, but no measuring devices have yet been perfected with which quantitative results can be obtained. A strong impetus will be given to the study of bed-load movement whenever a satisfactory method is devised for measuring its rate and determining its critical tractive force in natural rivers.

SUMMARY OF RESULTS

Nine sand mixtures, ranging in mean grain size from 0.205 mm (0.008 in.) to 4.077 mm (0.161 in.) were tested in a tilting flume at the U. S. Waterways Experiment Station, to determine their critical tractive forces and their rates of movement corresponding to all values of tractive force within the range obtainable in the flume. Each sand was tested at three different slopes, 0.0010, 0.0015, and 0.0020, with the exception of the coarsest mixture, which was tested at slopes of 0.0030, 0.0040, and 0.0045.

The basic data derived from the experiments, along with corresponding calculated data, are tabulated in Tables 8 to 37, and are shown graphically on Plates 24 to 38. The du Boys expression for tractive force, involving the slope, depth, and unit weight of water, was adopted as the basis for the study of the results.

Critical tractive force data were obtained which checked Kramer's formula within a reasonable percentage of error. A slight modification of his curve was suggested, in order that the plotted points might be followed somewhat more closely, and it was suggested that a lower limit of applicability (for model use) be placed on his formula, corresponding to a mean grain size of sand mixture of about 0.6 mm. For sands of mean grain size smaller than 0.6, a new criterion for general movement (the "model" criterion) was proposed; i. e., that general movement be said to obtain when, (1) the sand in motion as bed-load is reasonably similar in composition to the original material of which the bed was formed, and when, (2) the rate of movement equals or exceeds 1 pound per foot width per hour, dry weight.

The following equation was derived empirically for the rate of sand movement of the nine mixtures.

$$W = \frac{1}{n} \left(\frac{DS - D_o S_o}{k_1} \right)^m$$

in which W is the rate of movement in pounds per foot width per hour (dry weight), n is the Manning roughness coefficient, DS is the product of the depth in feet and the slope, $D_o S_o$ is the depth-slope product at which the linear plot of W against DS meets the DS-axis, and m and k_1 are dimensional constants obtained from a logarithmic plot of the data. The range of values of each of these factors is summarized in Table 4.

A study was made of the values of Manning's n encountered in the experiments, and it was found that for flow on a smooth sand bed, before the formation of riffles, the values differed very little from an average of 0.0107. After the formation of riffles, however, there was a great variation in the values, the maximum being 0.0287. In general, the finer the sand mixture, the larger was the riffle size, and consequently the higher the value of n.

It was also discovered that the finer sands commenced to riffle at smaller values of tractive force than the value at which the coarser materials riffled. The tractive force values at which riffles appeared are summarized in Table 6, and actual bed profiles are shown on Plates 39 to 44.

Mean, bottom, and surface velocities were observed, and are recorded in Tables 8 to 37. While they were not used as a basis for the studies of bed movement, significant changes in their variation with depth were found at points corresponding to the change from laminar to turbulent flow conditions and the change from smooth to riffled sand bed.

From a study of the turbulence conditions in the experiments, it was concluded that turbulent flow in a straight flume was assured if the value of Reynolds' number for open channels was 2500 or more.

Emphasis is placed on the fact that only a limited field was covered in the research reported in this paper. An extension of the original series of experiments is now under way at the Experiment Station.

TABLE 81

Observed Data and Computed Results²

Flow on Cement Bottom. Test No. 0-0.0005. Slope 0.0005. December 9-12, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(19)
Run No,	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	Water Temperature, Degrees Centigrade	Veloci Mean	ty, Ft. pe	r Sec. Bottom	$\operatorname*{Manning's}_{n}$	Turbulence Criterion VR	Reynolds' Number R Dimension- less	$\begin{array}{c} \text{Wave} \\ \text{Velocity} \\ \sqrt{\text{gD}} \\ \text{Ft. per Sec.} \end{array}$	Nature of Flow
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 21\\ 223\\ 24\\ 26\\ 27\\ 28\\ 29\\ 22\\ 28\\ 29\\ 31\\ 32\end{array}$	$\begin{array}{c} 0.005\\ 0.005\\ 0.009\\ 0.014\\ 0.017\\ 0.021\\ 0.022\\ 0.024\\ 0.026\\ 0.022\\ 0.032\\ 0.034\\ 0.052\\ 0.069\\ 0.100\\ 0.140\\ 0.175\\ 0.235\\ 0.300\\ 0.360\\ 0.428\\ 0.514\\ 0.670\\ 0.890\\ 1.102\\ 1.340\\ 1.520\\ 1.750\\ 1.900\\ 2.057\\ 2.163\\ 2.238\\ \end{array}$	$\begin{array}{c} 0.018\\ 0.019\\ 0.022\\ 0.026\\ 0.027\\ 0.029\\ 0.032\\ 0.036\\ 0.043\\ 0.044\\ 0.054\\ 0.065\\ 0.075\\ 0.075\\ 0.075\\ 0.128\\ 0.171\\ 0.173\\ 0.194\\ 0.214\\ 0.214\\ 0.245\\ 0.388\\ 0.414\\ 0.454\\ 0.454\\ 0.454\\ 0.519\\ 0.549\\ 0.559\\ 0.$	$\begin{array}{c} 0.042\\ 0.044\\ 0.051\\ 0.060\\ 0.063\\ 0.067\\ 0.074\\ 0.081\\ 0.083\\ 0.097\\ 0.102\\ 0.125\\ 0.151\\ 0.174\\ 0.215\\ 0.248\\ 0.296\\ 0.395\\ 0.400\\ 0.448\\ 0.495\\ 0.567\\ 0.666\\ 0.789\\ 0.875\\ 0.958\\ 1.050\\ 1.125\\ 1.270\\ 1.270\\ 1.270\\ 1.292\end{array}$	$\begin{array}{c} 0.018\\ 0.019\\ 0.022\\ 0.025\\ 0.026\\ 0.026\\ 0.031\\ 0.034\\ 0.034\\ 0.035\\ 0.041\\ 0.042\\ 0.052\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.066\\ 0.098\\ 0.115\\ 0.149\\ 0.151\\ 0.166\\ 0.181\\ 0.202\\ 0.231\\ 0.263\\ 0.285\\ 0.304\\ 0.327\\ 0.342\\ 0.358\\ 0.373\\ 0.378\\ \end{array}$	$\begin{array}{c} 16.5\\ 16.5\\ 16.7\\ 17.0\\ 17.0\\ 16.8\\ 18.0\\$	$\begin{array}{c} 0.11\\ 0.11\\ 0.18\\ 0.23\\ 0.27\\ 0.31\\ 0.30\\ 0.30\\ 0.32\\ 0.32\\ 0.32\\ 0.42\\ 0.46\\ 0.58\\ 0.65\\ 0.79\\ 0.76\\ 0.96\\ 1.04\\ 1.18\\ 1.34\\ 1.40\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.67\\ 1.67\\ 1.67\\ 1.71\\$	$\begin{array}{c} 0.18\\ 0.20\\ 0.30\\ 0.30\\ 0.41\\ 0.44\\ 0.43\\ 0.42\\ 0.42\\ 0.43\\ 0.42\\ 0.43\\ 0.53\\ 0.57\\ 0.68\\ 1.03\\ 1.08\\ 1.08\\ 1.08\\ 1.08\\ 1.08\\ 1.08\\ 1.08\\ 1.08\\ 1.98\\ 1.98\\ 1.98\\ 1.98\\ 1.98\\ 2.00\\ 0.92\\ 0.02\\$	0.55 0.61 0.72 0.82 0.87 0.92 1.06 1.16 1.23 1.27 1.36 1.40	$\begin{array}{c} 0.0209\\ 0.0206\\ 0.0145\\ 0.0125\\ 0.0107\\ 0.0098\\ 0.0111\\ 0.0117\\ 0.0116\\ 0.0132\\ 0.0122\\ 0.0119\\ 0.0112\\ 0.0112\\ 0.0113\\ 0.0099\\ 0.0100\\ 0.0099\\ 0.0100\\ 0.0099\\ 0.0103\\ 0.0104\\ 0.0104\\ 0.0104\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0096\\ 0.0095\\ 0.0096\\ 0.0095\\ 0.0096\\ 0.0097\\ 0.0095\\ 0.0096\\ 0.0097\\ 0.0096\\ 0.0097\\ 0.0095\\ 0.0096\\ 0.0097\\ 0.0096\\ 0.0006\\$	$\begin{array}{c} 0.002\\ 0.002\\ 0.004\\ 0.006\\ 0.007\\ 0.009\\ 0.009\\ 0.010\\ 0.011\\ 0.012\\ 0.013\\ 0.014\\ 0.022\\ 0.028\\ 0.041\\ 0.056\\ 0.069\\ 0.091\\ 0.113\\ 0.136\\ 0.159\\ 0.188\\ 0.239\\ 0.309\\ 0.368\\ 0.437\\ 0.483\\ 0.578\\ 0.612\\ 0.636\\ 0.$	$\begin{array}{c} 160\\ 180\\ 340\\ 500\\ 610\\ 760\\ 790\\ 860\\ 920\\ 1080\\ 1150\\ 1230\\ 1230\\ 1230\\ 1230\\ 4900\\ 2470\\ 3580\\ 8000\\ 9940\\ 11900\\ 13900\\ 16500\\ 21000\\ 22100\\ 32300\\ 38300\\ 42400\\ 47600\\ 50800\\ 54100\\ 54100\\ 56300\\ 560$	$\begin{array}{c} 0.76\\ 0.78\\ 0.84\\ 0.92\\ 0.93\\ 0.97\\ 1.01\\ 1.06\\ 1.18\\ 1.16\\ 1.18\\ 1.19\\ 1.32\\ 1.45\\ 1.55\\ 1.55\\ 1.73\\ 1.85\\ 2.03\\ 2.34\\ 2.36\\ 2.50\\ 2.62\\ 2.83\\ 3.05\\ 3.30\\ 3.59\\ 3.64\\ 4.20\\ 4.20\\ \end{array}$	Laminar Lam. and Turb. Turbulent
- 33	2,290	0.580	1.341	0.386	18.2	1.71	2.00		0.0103	0.658	58200	4.32	s 4

¹ See Plate 24.

x

9

² All values in English units.

³ Width of flume 2.313 ft.

57

ę

TABLE 91

OBSERVED DATA AND COMPUTED RESULTS²

Flow on Cement Bottom. Test No. 0-0.0010. Slope 0.0010. December 5-8, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(19)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	Water Temperature, Degrees Centigrade	Veloc Mean	ity, Ft. pe Surface	er Sec. Bottom	$\operatorname*{Manning's}_{n}$	Turbulence Criterion VR	Reynolds' Number R Dimension- less	Wave Velocity \sqrt{gD} Ft. per Sec.	Nature of Flow
$1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\17\\18\\20\\22\\23\\24\\25\\27\\28\\20\\30\\1$	$\begin{array}{c} 0.008\\ 0.010\\ 0.012\\ 0.017\\ 0.023\\ 0.032\\ 0.032\\ 0.038\\ 0.060\\ 0.065\\ 0.090\\ 0.120\\ 0.168\\ 0.228\\ 0.228\\ 0.221\\ 0.397\\ 0.505\\ 0.597\\ 0.670\\ 0.662\\ 0.763\\ 0.840\\ 0.889\\ 0.060\\ 1.040\\ 1.250\\ 1.420\\ 1.610\\ 1.770\\ 1.960\\ 2.174\end{array}$	$\begin{array}{c} 0.016\\ 0.018\\ 0.021\\ 0.024\\ 0.022\\ 0.035\\ 0.048\\ 0.069\\ 0.048\\ 0.069\\ 0.084\\ 0.101\\ 0.116\\ 0.180\\ 0.185\\ 0.195\\ 0.195\\ 0.242\\ 0.242\\ 0.242\\ 0.256\\ 0.274\\ 0.242\\ 0.314\\ 0.364\\ 0.388\\ 0.388\\ 0.418\\ \end{array}$	$\begin{array}{c} 0.037\\ 0.042\\ 0.044\\ 0.049\\ 0.055\\ 0.065\\ 0.074\\ 0.081\\ 0.095\\ 0.111\\ 0.134\\ 0.268\\ 0.322\\ 0.374\\ 0.423\\ 0.451\\ 0.458\\ 0.562\\ 0.565\\ 0.565\\ 0.565\\ 0.565\\ 0.565\\ 0.565\\ 0.565\\ 0.565\\ 0.680\\ 0.726\\ 0.789\\ 0.842\\ 0.897\\ 0.957\\ \end{array}$	$\begin{array}{c} 0.016\\ 0.018\\ 0.019\\ 0.021\\ 0.023\\ 0.027\\ 0.031\\ 0.034\\ 0.040\\ 0.046\\ 0.055\\ 0.065\\ 0.078\\ 0.093\\ 0.105\\ 0.124\\ 0.158\\ 0.167\\ 0.169\\ 0.183\\ 0.200\\ 0.202\\ 0.222\\ 0.234\\ 0.222\\ 0.234\\ 0.247\\ 0.264\\ 0.276\\ 0.291\\ 0.304\\ \end{array}$	$\begin{array}{c} 19.2\\ 19.2\\ 19.2\\ 19.0\\ 19.0\\ 19.3\\ 19.3\\ 19.3\\ 19.3\\ 19.2\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.2\\$	$\begin{array}{c} 0.22\\ 0.24\\ 0.27\\ 0.25\\ 0.42\\ 0.43\\ 0.43\\ 0.43\\ 0.53\\ 0.59\\ 0.67\\ 0.75\\ 0.98\\ 1.09\\ 1.23\\ 1.49\\ 1.51\\ 1.52\\ 1.50\\ 1.57\\ 1.62\\ 1.64\\ 1.84\\ 1.96\\ 2.04\\ 2.10\\ 2.27\\ \end{array}$	$\begin{array}{c} 0.37\\ 0.45\\ 0.51\\ 0.60\\ 0.65\\ 0.57\\ 0.67\\ 0.74\\ 0.95\\ 1.08\\ 1.24\\ 1.35\\ 1.45\\$		$\begin{array}{c} 0.0137\\ 0.0136\\ 0.0122\\ 0.0102\\ 0.0091\\ 0.0098\\ 0.0107\\ 0.0105\\ 0.0107\\ 0.0104\\ 0.0103\\ 0.0104\\ 0.0104\\ 0.0104\\ 0.0099\\ 0.0099\\ 0.0099\\ 0.0095\\ 0.0094\\ 0.0094\\ 0.0094 \end{array}$	$\begin{array}{c} 0.003\\ 0.004\\ 0.005\\ 0.007\\ 0.012\\ 0.013\\ 0.016\\ 0.021\\ 0.027\\ 0.037\\ 0.049\\ 0.068\\ 0.091\\ 0.114\\ 0.153\\ 0.223\\ 0.248\\ 0.255\\ 0.278\\ 0.300\\ 0.318\\ 0.339\\ 0.364\\ 0.483\\ 0.580\\ 0.636\\ 0.636\\ 0.690\\ \end{array}$	$\begin{array}{c} 310\\ 390\\ 470\\ 870\\ 1050\\ 1220\\ 1450\\ 1920\\ 2430\\ 3360\\ 4400\\ 6080\\ 8170\\ 10300\\ 13800\\ 13800\\ 13800\\ 13800\\ 22400\\ 22400\\ 22400\\ 24400\\ 24400\\ 24400\\ 24400\\ 246300\\ 27200\\ 29000\\ 31100\\ 46000\\ 46000\\ 49600\\ 59000\\ \end{array}$	$\begin{array}{c} 0.72\\ 0.76\\ 0.78\\ 0.82\\ 0.88\\ 0.95\\ 1.01\\ 1.06\\ 1.15\\ 1.24\\ 1.36\\ 1.49\\ 1.65\\ 1.82\\ 2.11\\ 2.28\\ 2.42\\ 2.51\\ 2.52\\ 2.52\\ 2.64\\ 2.78\\ 2.80\\ 2.87\\ 2.96\\ 3.31\\ 3.31\\ 3.42\\ 3.53\\ 3.64 \end{array}$	Laminar Lam. and Turb. Turbulent
32	2.255 See Plate 24.	0.434	1.002 2 All values in	0.315 English units	17.8 3 Wi	$\frac{2.25}{\text{dth of flu}}$	2.71 me 2.313	1 2.05 ft.	0.0097	0.708	60600	3.73	

4 è .

3 &

		TAE	3LE 10 1	
Observed	DATA	AND	Computed	Results ²

Flow on Cement Bottom. Test No. 0-0.0015. Slope 0.0015. December 12-14, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(19)
Run	Discharge, Q	Depth, D Ft	Area ³ Cross-section,	Hydraulic Radius, R	Water Temperature, Degrees Centigrade	Veloc	ty, Ft. per Sec.		Manning's	Turbulence Criterion	Reynolds' Number	$\begin{matrix} \text{Wave} \\ \text{Velocity} \\ \sqrt{\text{gD}} \end{matrix}$	Nature of
110.	0.11.0.		Sq. Ft.	Ft.	Centrigratie	Mean	Surface	Bottom	26	VR	less	Ft. per Sec.	Flow
	() 0.0M	0.011	2 000	- 011	1		0.00		· · · · · · · · · · · · · · · · · · ·				
1	0.007	0.014	0.032	0.014	17.6	0.20	0.33		0.0159	0.003	240	0.67	Laminar
2	0.008	0.015	0.035	0.015	17.6	0.22	0.37		0.0155	0.003	280	0.70	
3	0.010	0.010	0.037	0.016	17.0	0.20	0.40		0.0136	0.004	360	0.72	
5	0.011	0.017	0.039	0.017	17.0	0.29	0.40		0.0128	0.005	420	0.74	to an address h
6	0.010	0.013	0.044	0.019	18.0	0.30	0.61		0.0112	0.007	750	0.78	Lam. and 1 urb.
7	0.022	0.022	0.045	0.022	17.9	0.43	0.62	and the last too and the and	0.0108	0.008	830	0.84	
8	0.026	0.025	0.058	0.024	18.0	0.45	0.64		0.0109	0.005	970	0.04	
ğ	0.031	0.028	0.065	0.027	18.2	0.48	0.65		0.0109	0.013	1170	0.95	
10	0.035	0.030	0.069	0.029	18.4	0.50	0.67		0.0109	0.015	1320	0.98	Turbulent
11	0.048	0.036	0.083	0.035	18.4	0.57	0.75		0.0109	0.020	1780	1.08	x di buient
12	0.090	0.050	0.116	0.048	18.4	0.78	0.94		0.0099	0.037	3330	1.27	14
13	0.139	0.065	0.150	0.062	18.5	0.92	1.13	0.98	0.0097	0.057	5060	1.45	1.5
14	0.190	0.077	0.179	0.072	18.6	1.07	1.28	1.13	0.0094	0.077	6920	1.58	44
15	0,260	0.094	0.218	0.087	18.6	1.20	1.46	1.27	0.0094	0.104	9350	1.74	
16	0.385	0.118	0.273	0.107	18.6	1.41	1.71	1.47	0.0091	0.151	13700	1.95	
17	0.605	0.152	0.352	0.135	18.6	1.72	2.02	1.57	0.0087	0.232	20800	2.21	14
18	0.815	0.188	0,435	0.162	18.6	1.87	2.25	1.69	0.0091	0.315	28400	2.46	• 1
19	1.020	0.219	0.507	0.184	18.7	2.02	2.41		0.0092	0.370	33200	2.66	
20	1.210	0.244	0.565	0.202	18.7	2.14	2.50	******	0.0092	0.432	38800	2.80	
21	1.320	0.259	0.600	0.212	18.7	2.20	2.54	~~~~~~~~	0.0093	0.467	42000	2.89	
22	1.470	0.279	0.645	0.225	18.7	2.28	2.63		0.0093	0.513	46300	2.98	••
23	1.660	0.304	0.704	0.241	18.8	2.36	2.78		0.0094	0.568	51200	3.13	
24	1.930	0.334	0.772	0.259	18.8	2.50	2.94	11 14 m ² for hit par his pa	0.0093	0.647	58300	3.28	
25	2.112	0.359	0.831	0.274	18.8	2.54	3.03	~ ~ ~ ~ ~ ~ ~ ~ ~	0.0096	0.696	62700	3.40	- 1
26	1 2.267	0.369	0.854	0.280	18.8	2.66	3.18		0.0093	0.742	66800	3.45	

1 See Plate 24.

A

\$

2 All values in English units.

³ Width of flume 2.313 ft.

ŧ

\$

TABLE 111

Observed Data and Computed Results²

Sand No. 1. Mean Grain Size 0.5861 mm. Uniformity Modulus 0.2796. Test No. 1-0.0010. Slope 0.0010. June 19, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Díscharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	⁵ Water Temper- ature, Degrees Centigrade	Mean Mean	/elocit . per S gulgee S	Bottom	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensiouless	Wave Velocity vgD Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Db./Ft. Width/Hour	Mean Size of Trapped Sand d _{ir} , mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\9\\20\\21\\223\\24\\5\\26\\27\\28\\29\end{array}$	$\begin{array}{c} 0.006\\ 0.012\\ 0.029\\ 0.053\\ 0.083\\ 0.109\\ 0.131\\ 0.168\\ 0.227\\ 0.287\\ 0.287\\ 0.308\\ 0.348\\ 0.392\\ 0.435\\ 0.490\\ 0.534\\ 0.595\\ 0.651\\ 0.762\\ 0.825\\ 0.935\\ 1.000\\ 1.050\\ 1.000\\ 1.015\\ 1.160\\ 1.260\\ 1.260\\ 0.115\\ 0.160\\ 1.260\\ 0.001\\ 0.115\\ 0.160\\ 0.115\\ 0.160\\ 0.115\\ 0.160\\ 0.160\\ 0.001\\ 0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.$	$\begin{array}{c} 0.015\\ 0.017\\ 0.027\\ 0.039\\ 0.054\\ 0.062\\ 0.070\\ 0.080\\ 0.096\\ 0.106\\ 0.113\\ 0.118\\ 0.127\\ 0.140\\ 0.156\\ 0.180\\ 0.180\\ 0.180\\ 0.206\\ 0.214\\ 0.227\\ 0.240\\ 0.252\\ 0.276\\ 0.291\\ 0.302\\ 0.310\\ 0.322\\ 0.310\\ 0.322\\ 0.310\\ 0.322\\ 0.310\\ 0.322\\ 0.310\\ 0.322\\ 0.322\\ 0.310\\ 0.322\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.310\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.310\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.310\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.322\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.320\\ 0.$	$\begin{array}{c} 0.036\\ 0.042\\ 0.066\\ 0.095\\ 0.131\\ 0.169\\ 0.194\\ 0.218\\ 0.232\\ 0.256\\ 0.273\\ 0.286\\ 0.307\\ 0.338\\ 0.377\\ 0.401\\ 0.436\\ 0.436\\ 0.448\\ 0.517\\ 0.448\\ 0.549\\ 0.549\\ 0.580\\ 0.667\\ 0.704\\ 0.730\\ 0.750\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.756\\ 0.$	$\begin{array}{c} 0.015\\ 0.017\\ 0.026\\ 0.038\\ 0.051\\ 0.059\\ 0.066\\ 0.075\\ 0.089\\ 0.097\\ 0.103\\ 0.107\\ 0.115\\ 0.126\\ 0.138\\ 0.163\\ 0.176\\ 0.138\\ 0.163\\ 0.176\\ 0.182\\ 0.163\\ 0.176\\ 0.200\\ 0.208\\ 0.225\\ 0.242\\ 0.247\\ 0.254\end{array}$	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	$\begin{array}{c} 0.17\\ 0.29\\ 0.56\\ 0.63\\ 0.73\\ 0.97\\ 0.90\\ 0.90\\ 0.90\\ 1.08\\ 1.13\\ 1.08\\ 1.16\\ 1.15\\ 1.22\\ 1.22\\ 1.22\\ 1.32\\ 1.31\\ 1.39\\ 1.42\\ 1.53\\ 1.55\\ 1.55\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\$	No Observations	No Observations	$\begin{array}{c} 0.0169\\ 0.0107\\ 0.0094\\ 0.0094\\ 0.0096\\ 0.0103\\ 0.0097\\ 0.0100\\ 0.0095\\ 0.0095\\ 0.0098\\ 0.0098\\ 0.0098\\ 0.0098\\ 0.0098\\ 0.0098\\ 0.0098\\ 0.0101\\ 0.0108\\ 0.0108\\ 0.0102\\ 0.0101\\ 0.0108\\ 0.0112\\ 0.0103\\ 0.0108\\ 0.0112\\ 0.0103\\ 0.0108\\ 0.0112\\ 0.0113\\ 0.0108\\ 0.0112\\ 0.0113\\ 0.0108\\ 0.0112\\ 0.0113\\ 0.0108\\ 0.0112\\ 0.0113\\ 0.0108\\ 0.0112\\ 0.0113\\ 0.0108\\ 0.0112\\ 0.0113\\ 0.0108\\ 0.0112\\ 0.0113\\ 0.0108\\ 0.0112\\ 0.0113\\ 0.0108\\ 0.0112\\ 0.0113\\ 0.0108\\ 0.0112\\ 0.0119\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.0$	$\begin{array}{c} 0.003\\ 0.005\\ 0.011\\ 0.021\\ 0.032\\ 0.043\\ 0.051\\ 0.065\\ 0.076\\ 0.097\\ 0.108\\ 0.115\\ 0.130\\ 0.146\\ 0.159\\ 0.178\\ 0.193\\ 0.215\\ 0.230\\ 0.254\\ 0.266\\ 0.284\\ 0.320\\ 0.337\\ 0.350\\ 0.370\\ 0.382\\ 0.401\\ 0.401\\ 0.382\\ 0.401\\ 0.401\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.$	270 530 1240 2310 3510 4700 9450 10500 11800 12500 14200 14200 25000 25000 25000 25000 25000 25000 38400 36600 38100 40100 41500	$\begin{array}{c} 0.69\\ 0.74\\ 0.93\\ 1.20\\ 1.32\\ 1.41\\ 1.50\\ 1.75\\ 1.85\\ 1.90\\ 1.75\\ 2.02\\ 2.12\\ 2.24\\ 2.31\\ 2.40\\ 2.45\\ 2.57\\ 2.62\\ 2.77\\ 2.82\\ 2.77\\ 2.82\\ 2.98\\ 3.06\\ 3.11\\ 3.12\\ 3.21\\ \end{array}$	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	0.568	0.480	$\begin{array}{c} 0.0009\\ 0.0017\\ 0.0024\\ 0.0034\\ 0.0034\\ 0.0036\\ 0.0046\\ 0.0050\\ 0.0060\\ 0.0060\\ 0.0071\\ 0.0074\\ 0.0077\\ 0.0077\\ 0.0097\\ 0.0087\\ 0.0097\\ 0.0087\\ 0.0097\\ 0.0129\\ 0.0129\\ 0.0134\\ 0.0129\\ 0.0134\\ 0.0150\\ 0.0150\\ 0.0152\\ 0.0182\\ 0.0182\\ 0.0182\\ 0.0182\\ 0.0182\\ 0.0182\\ 0.0194\\ 0.0201 \end{array}$	No Observations	None Weak Medium General 	Smooth 	$\{T_{c}=0.0077\}$ {("Model") $\{T_{c}=0.0084\}$ (Visual)

1 See Plate 25.
2 All values in English units except grain size in millimeters.
3 Width of flume 2,416 feet.
4 Dry weight.
5 Estimated from weather bureau records.

14 ¥

09

5 &

TABLE 121 Observed Data and Computed Results²

8

ş

Sand No. 1. Mean Grain Size 0.5861 mm. Uniformity Modulus 0.2796. Test No. 1-0.0015. Slope 0.0015. May 25, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	⁵ Water Temper- ature, Degrees Centigrade	Ft. Weam	elocit per S Surface	Bottom age	Mannîng's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	$\frac{Wave Velocity}{\sqrt{gD}}$ Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand d _x , mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\23\\24\\25\\6\\27\\28\\29\\22\\28\\29\\20\\28\\29\\30\end{array}$		$\begin{array}{c} 0.017\\ 0.020\\ 0.030\\ 0.042\\ 0.054\\ 0.062\\ 0.071\\ 0.085\\ 0.090\\ 0.108\\ 0.125\\ 0.133\\ 0.125\\ 0.133\\ 0.133\\ 0.153\\ 0.147\\ 0.153\\ 0.165\\ 0.175\\ 0.183\\ 0.120\\ 0.204\\ 0.211\\ 0.218\\ 0.224\\ 0.211\\ 0.218\\ 0.257\\ 0.257\\ 0.270\\ 0.271\end{array}$	$\begin{array}{c} 0.041\\ 0.048\\ 0.073\\ 0.102\\ 0.131\\ 0.102\\ 0.218\\ 0.218\\ 0.228\\ 0.261\\ 0.303\\ 0.321\\ 0.355\\ 0.370\\ 0.384\\ 0.400\\ 0.384\\ 0.400\\ 0.384\\ 0.400\\ 0.384\\ 0.400\\ 0.355\\ 0.370\\ 0.384\\ 0.400\\ 0.527\\ 0.549\\ 0.574\\ 0.527\\ 0.574\\ 0.621\\ 0.652\end{array}$	$ \begin{array}{c} 0.017\\ 0.020\\ 0.020\\ 0.041\\ 0.052\\ 0.059\\ 0.067\\ 0.080\\ 0.084\\ 0.099\\ 0.108\\ 0.108\\ 0.118\\ 0.120\\ 0.123\\ 0.131\\ 0.133\\ 0.131\\ 0.141\\ 0.145\\ 0.163\\ 0.141\\ 0.145\\ 0.163\\ 0.169\\ 0.168\\ 0.185\\ 0.175\\ 0.180\\ 0.185\\ 0.199\\ 0.212\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0$	$ \begin{array}{c} 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0\\ 27.0$	$\begin{array}{c} 0.22\\ 0.35\\ 0.65\\ 0.77\\ 0.68\\ 0.98\\ 0.98\\ 1.05\\ 1.10\\ 1.22\\ 1.20\\ 1.21\\ 1.20\\ 1.21\\ 1.25\\ 1.58\\ 1.68\\ 1.65\\ 1.58\\ 1.68\\ 1.67\\ 1.72\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\$	No Observations	No Observations	$\begin{array}{c} 0.0170\\ 0.0120\\ 0.0114\\ 0.0107\\ 0.0103\\ 0.0098\\ 0.0097\\ 0.0101\\ 0.0100\\ 0.0100\\ 0.0100\\ 0.0101\\ 0.0101\\ 0.0113\\ 0.0114\\ 0.0113\\ 0.0114\\ 0.0115\\ 0.0113\\ 0.0114\\ 0.0115\\ 0.0113\\ 0.0114\\ 0.0115\\ 0.0113\\ 0.0114\\ 0.0115\\ 0.0113\\ 0.0114\\ 0.0115\\ 0.0113\\ 0.0114\\ 0.0115\\ 0.0113\\ 0.0114\\ 0.0115\\ 0.0112\\ 0.0120\\ 0.0120\\ 0.0120\\ 0.0128\\ 0.0120\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.0120\\ 0.0124\\ 0.0125\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\$	$\begin{array}{c} 0.004\\ 0.007\\ 0.014\\ 0.027\\ 0.040\\ 0.053\\ 0.066\\ 0.084\\ 0.093\\ 0.102\\ 0.119\\ 0.128\\ 0.136\\ 0.146\\ 0.146\\ 0.170\\ 0.180\\ 0.133\\ 0.235\\ 0.245\\ 0.233\\ 0.245\\ 0.265\\ 0.277\\ 0.286\\ 0.293\\ 0.304\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.374\\ 0.$	$\begin{array}{c} 410\\ 770\\ 1520\\ 2890\\ 4370\\ 5730\\ 7160\\ 9150\\ 10100\\ 11100\\ 12900\\ 13900\\ 14800\\ 18500\\ 18500\\ 18500\\ 18500\\ 26500\\ 25500\\ 22500\\ 23900\\ 23900\\ 23900\\ 23900\\ 23900\\ 23900\\ 31100\\ 31900\\ 331900\\ 33900\\ 34000\\ 34000\\ 34000\\ 36600\\ 40700\\ 33900\\ 3600\\ 34000\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3600\\ 3$		$\begin{array}{c} & & & \\ & & & \\ 60 \\ & & & \\ 42 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & & & \\ 20 \\ & &$	$\begin{array}{c} 0.1\\ 0.5\\ 1.6\\ 1.9\\ 2.1\\ 3.5\\ 3.9\\ 3.8\\ 4.5\\ 5.3\\ 7.3\\ 9.6\\ 11.4\\ 12.2\\ 13.5\\ 12.7\\ 13.7\\ 15.5\\ 16.9\\ 18.4\\ 21.4\\ 21.4\\ 23.7\\ 15.7\\ 28.6\\ 25.7\end{array}$	0.507 0.607 0.532 0.714 0.537 0.529 0.515 0.534	0.274 0.509 0.440 0.411 0.384 0.383 0.394 0.415	$\begin{array}{c} 0.0016\\ 0.0019\\ 0.0028\\ 0.0039\\ 0.0051\\ 0.0068\\ 0.0084\\ 0.0084\\ 0.0084\\ 0.0093\\ 0.0101\\ 0.0112\\ 0.0125\\ 0.0125\\ 0.0128\\ 0.0143\\ 0.0143\\ 0.0143\\ 0.0143\\ 0.0155\\ 0.0155\\ 0.0158\\ 0.0143\\ 0.0171\\ 0.0178\\ 0.0178\\ 0.0198\\ 0.0203\\ 0.0203\\ 0.0223\\ 0.02243\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.02241\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0223\\ 0.0224\\ 0.0224\\ 0.0222\\ 0.0224\\ 0.0222\\ 0.0224\\ 0.0222\\ 0.0224\\ 0.0222\\ 0.0224\\ 0.0222\\ 0.0224\\ 0.0222\\ 0.0224\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0222\\ 0$	No Observations	None Weak Medium General 	Smooth Local riffles 	$\begin{cases} T_{c} = 0.0072 \\ ("Model") \\ T_{c} = 0.0092 \\ (Visual) \end{cases}$

See Plate 25.
 All values in English units except grain size in millimeters.
 Width of flume 2.416 ft.
 Dry weight.
 Estimated from weather bureau records.

3,

\$

ු

TABLE 13 1

Observed Data and Computed Results²

Sand No. 1. Mean Grain Size 0.5861 mm. Uniformity Modulus 0.2796. Test No. 1-0.0020). Slope 0.0020.	May 17, 1933.
---	------------------	---------------

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)	(11) (12) (13)	(14) (15) (16) (17)	(18) (19) (20)	(21) (20)
Run No. Discharge, Q c. f. s. c. f. s. d. f. s. Depth, D Ft. Ft. Sq. Ft. Radius, Radius, Retrees ature, Temper- ature, Crease ft. Aft. Attract Attract Button Button Manning's n Turbulence	$\begin{array}{c} \mbox{Criterion}\\ \mbox{VR}\\ \mbox{Nnumbers}\\ \mbox{Nnumbers}\\ \mbox{Mave Velocity}\\ \mbox{Vave Velocity}\\ \mbox{Velocity}\\ \mbox{Ft per Sec.} \end{array}$	Length of Rum Minutes Rate Sand Movement 4 Nicht/Ftr Width/Ftr Mean Size ou dg, mm. Unformity Unformity Modulus of Trapped Sand Modulus of Trapped Sand Modulus of Trapped Sand	Tractive Force T. D. per Sq. Ft. Nature of Flow Movement	Condition of Life
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

* 5

1 g

TABLE 14 1

9

4

Observed Data and Computed Results²

Sand No. 2. Mean Grain Size 0.5409 mm. Uniformity Modulus 0.4388. Test No. 2-0.0010. Slope 0.0010. September 5, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q e. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulie Radius, R Ft.	⁵ Water Temper- ature, Degrees Centigrade	Wean Wean	elocit: .per S. .gulace	Bottom a c	Manning's n	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity v gD Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ I.b./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension-	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\1\end{array} $	$\begin{array}{c} 0.005\\ 0.015\\ 0.029\\ 0.062\\ 0.100\\ 0.127\\ 0.157\\ 0.315\\ 0.267\\ 0.315\\ 0.390\\ 0.470\\ 0.560\\ 0.743\\ 0.900\\ 0.995\\ 1.087\\ 1.180\\ 1.300\\ 1.430\\ \end{array}$	$\begin{array}{c} 0.014\\ 0.018\\ 0.031\\ 0.047\\ 0.063\\ 0.074\\ 0.087\\ 0.096\\ 0.119\\ 0.131\\ 0.151\\ 0.172\\ 0.193\\ 0.237\\ 0.255\\ 0.270\\ 0.286\\ 0.304\\ 0.321\\ 0.351\\ 0.$			27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	$\begin{array}{c} 0.15\\ 0.39\\ 0.55\\ 0.66\\ 0.71\\ 0.75\\ 0.83\\ 0.99\\ 1.07\\ 1.13\\ 1.20\\ 1.35\\ 1.38\\ 1.48\\ 1.48\\ 1.52\\ 1.53\\ 1.53\\ 1.53\end{array}$	No Observations	No Observations	$\begin{array}{c} 0.0185\\ 0.0094\\ 0.0125\\ 0.0109\\ 0.0109\\ 0.0113\\ 0.0113\\ 0.0114\\ 0.0114\\ 0.0114\\ 0.0114\\ 0.0112\\ 0.0123\\ 0.0123\\ 0.0123\\ 0.0123\\ 0.0124\\ 0.0024\\$		220 670 1390 2680 6580 8060 12700 125600 12700 21700 21700 21700 236300 33200 36300 45300 45300		$\begin{array}{c}\\\\\\\\\\\\\\\\$	0.6 1.1 2.7 4.0 5.5 7.0 8.0 9.7 15.1 15.8 20.0 28.4	0.742 0.714 0.571 0.502 0.481 0.510 0.552	0.533 0.487 0.465 0.518 0.496 0.475 0.455	$\left \begin{array}{c} 0.0009\\ 0.0011\\ 0.0019\\ 0.0029\\ 0.0039\\ 0.0046\\ 0.0074\\ 0.0060\\ 0.0074\\ 0.0094\\ 0.0107\\ 0.0120\\ 0.0129\\ 0.0169\\ 0.0179\\ 0.0190\\ 0.0229\\ 0.0219\\ 0.023$	No Observations	None Weak Medium General 	Smooth General riffles 	$\begin{cases} T_{c} = 0.0080 \\ (Visual) \\ T_{c} = 0.0130 \\ (''Model'') \end{cases}$

See Plate 26.
 All values in English units except grain size in millimeters.
 Width of flume 2.416 ft.
 Dry weight.
 Estimated from weather bureau records.

*

х

TABLE 15¹

Observed Data and Computed Results²

Sand No. 2. Mean Grain Size 0.5409 mm. Uniformity Modulus 0.4388. Test No. 2-0.0015. Slope 0.0015. August 25, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	$\begin{array}{c} \text{Hydraulic} \\ \text{Radius, R} \\ F_{\text{t.}} \end{array}$	⁵ Water Temper- ature, Degrees Centigrade	V Ft. Mean	elocit per S sartace S	Bottom A	Manning's <i>u</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity vgD Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\189\\221\\223\\24\end{array}$	$\begin{array}{c} 0.002\\ 0.006\\ 0.008\\ 0.012\\ 0.012\\ 0.015\\ 0.019\\ 0.022\\ 0.027\\ 0.106\\ 0.227\\ 0.297\\ 0.412\\ 0.476\\ 0.760\\ 0.832\\ 1.040\\ 1.226\\ 1.390\\ 1.460\\ 1.816\\ \end{array}$	$\begin{array}{c} 0.010\\ 0.011\\ 0.012\\ 0.013\\ 0.014\\ 0.016\\ 0.027\\ 0.031\\ 0.062\\ 0.080\\ 0.097\\ 0.114\\ 0.140\\ 0.157\\ 0.218\\ 0.234\\ 0.251\\ 0.271\\ 0.218\\ 0.335\\ 0.3361\\ 0.3361\\ 0.413\\ \end{array}$		$\left \begin{array}{c} 0.010\\ 0.011\\ 0.012\\ 0.013\\ 0.014\\ 0.016\\ 0.023\\ 0.023\\ 0.025\\ 0.030\\ 0.059\\ 0.075\\ 0.090\\ 0.104\\ 0.125\\ 0.139\\ 0.187\\ 0.199\\ 0.208\\ 0.222\\ 0.246\\ 0.262\\ 0.278\\ 0.307\\ 0.307\\ 0.302\\ $	$\begin{array}{c} 27.0\\$	$\begin{array}{c} 0.07\\ 0.25\\ 0.27\\ 0.31\\ 0.37\\ 0.39\\ 0.34\\ 0.36\\ 0.71\\ 0.83\\ 0.97\\ 1.08\\ 1.22\\ 1.25\\ 1.48\\ 1.52\\ 1.48\\ 1.52\\ 1.56\\ 1.72\\ 1.65\\ 1.72\\ 1.65\\ 1.72\\ 1.82 \end{array}$	No Observations	No Observations	$\begin{array}{c} 0.0361\\ 0.0112\\ 0.0113\\ 0.0102\\ 0.0088\\ 0.0093\\ 0.0103\\ 0.0153\\ 0.0153\\ 0.0153\\ 0.0123\\ 0.0123\\ 0.0119\\ 0.0113\\ 0.0123\\ 0.0133\\ 0.0133\\ 0.0133\\ 0.0137\\ 0.0136\\ 0.0137\\ 0.0146\\ 0.004\\ 0.00$	$\begin{array}{c} 0.001\\ 0.003\\ 0.003\\ 0.004\\ 0.005\\ 0.006\\ 0.007\\ 0.008\\ 0.009\\ 0.011\\ 0.042\\ 0.062\\ 0.088\\ 0.112\\ 0.062\\ 0.088\\ 0.112\\ 0.062\\ 0.153\\ 0.174\\ 0.270\\ 0.295\\ 0.316\\ 0.352\\ 0.450\\ 0.465\\ 0.558\\ \end{array}$	$\begin{array}{c} 70\\ 300\\ 350\\ 430\\ 560\\ 670\\ 800\\ 840\\ 990\\ 1180\\ 4540\\ 6760\\ 9510\\ 12200\\ 16600\\ 19000\\ 29400\\ 32100\\ 32400\\ 38300\\ 44000\\ 38300\\ 44800\\ 50600\\ 60800\\ \end{array}$	$\begin{array}{c} 0.57\\ 0.59\\ 0.62\\ 0.65\\ 0.67\\ 0.72\\ 0.78\\ 0.88\\ 0.93\\ 1.00\\ 1.41\\ 1.60\\ 1.76\\ 1.91\\ 2.12\\ 2.24\\ 2.65\\ 2.74\\ 2.84\\ 2.94\\ 3.14\\ 3.28\\ 3.40\\ 3.64\\ \end{array}$	21 8 8 19 10 15 9 10 10 10 10 10 10 7	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	0.784 0.831 0.791 0.494 	0.438 0.460 0.404 0.508	$\begin{array}{c} 0.0009\\ 0.0010\\ 0.0011\\ 0.0012\\ 0.0013\\ 0.0015\\ 0.0022\\ 0.0025\\ 0.0025\\ 0.0025\\ 0.0075\\ 0.0091\\ 0.0107\\ 0.0131\\ 0.0147\\ 0.0204\\ 0.0215\\ 0.0254\\ 0.0258\\ 0.0254\\ 0.0258\\ 0.0313\\ 0.0338\\ 0.0338\\ 0.038\end{array}$	Laminar Lam. & Turb. Turbulent 	None Weak General 	Smooth 	$\begin{cases} T_{c} = 0.0090 \\ (Visual) \\ \\ T_{c} = 0.0180 \\ (''Model'') \end{cases}$

See Plate 27.
 All values in English units except grain size in millimeters.
 Width of flume 2.416 ft.
 Dry weight.
 Estimated from weather bureau records.

4 2
TABLE 16¹

¥

ş

Observed Data and Computed Results²

Sand No. 2. Mean Grain Size 0.5409 mm. Uniformity Modulus 0.4388. Test No. 2-0.0020. Slope 0.0020. August 15, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius. R Ft.	⁵ Water Temper- ature. Degrees Centigrade	Wean Wean	elocit: per S eorgan S	Boftom a	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity vgD Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 0\\ 11\\ 12\\ 13\\ 14\\ 5\\ 16\\ 17\\ 18\\ 9\\ 221\\ 23\\ 2\end{array}$	$\begin{array}{c} 0.007\\ 0.010\\ 0.015\\ 0.019\\ 0.024\\ 0.037\\ 0.125\\ 0.150\\ 0.150\\ 0.187\\ 0.241\\ 0.287\\ 0.379\\ 0.456\\ 0.550\\ 0.660\\ 0.750\\ 0.820\\ 0.998\\ 1.238\\ 1.298 \end{array}$	$\begin{array}{c} 0.012\\ 0.013\\ 0.017\\ 0.020\\ 0.025\\ 0.034\\ 0.064\\ 0.072\\ 0.082\\ 0.092\\ 0.103\\ 0.128\\ 0.146\\ 0.165\\ 0.193\\ 0.210\\ 0.223\\ 0.235\\ 0.248\\ 0.264\\ 0.287\\ 0.302 \end{array}$	$\begin{array}{c} 0.029\\ 0.031\\ 0.041\\ 0.048\\ 0.060\\ 0.077\\ 0.130\\ 0.155\\ 0.178\\ 0.222\\ 0.249\\ 0.309\\ 0.353\\ 0.359\\ 0.368\\ 0.538\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.693\\ 0.730\\ \end{array}$	$\begin{array}{c} 0.012\\ 0.013\\ 0.017\\ 0.020\\ 0.024\\ 0.031\\ 0.052\\ 0.061\\ 0.068\\ 0.077\\ 0.085\\ 0.016\\ 0.130\\ 0.145\\ 0.168\\ 0.179\\ 0.188\\ 0.197\\ 0.206\\ 0.212\\ 0.232\\ 0.242 \end{array}$	$\begin{array}{c} 27.0\\$	$\begin{array}{c} 0.24\\ 0.32\\ 0.37\\ 0.40\\ 0.48\\ 0.76\\ 0.81\\ 0.86\\ 1.09\\ 1.15\\ 1.23\\ 1.23\\ 1.23\\ 1.42\\ 1.48\\ 1.53\\ 1.63\\ 1.63\\ 1.69\\ 1.79\\ 1.78\end{array}$	No Observations	No Observations	$\begin{array}{c} 0.0143\\ 0.0111\\ 0.0118\\ 0.0124\\ 0.0138\\ 0.0121\\ 0.0128\\ 0.0128\\ 0.0128\\ 0.0128\\ 0.0128\\ 0.0128\\ 0.0128\\ 0.0142\\ 0.0143\\ 0.0143\\ 0.0143\\ 0.0140\\ 0.0140\\ 0.0145\\ \end{array}$	$\begin{array}{c} 0.003\\ 0.004\\ 0.006\\ 0.008\\ 0.010\\ 0.015\\ 0.049\\ 0.059\\ 0.073\\ 0.092\\ 0.109\\ 0.142\\ 0.168\\ 0.200\\ 0.236\\ 0.264\\ 0.287\\ 0.321\\ 0.343\\ 0.368\\ 0.415\\ 0.431\\ \end{array}$	$\begin{array}{c} 310\\ 460\\ 680\\ 860\\ 1040\\ 1620\\ 5350\\ 6370\\ 7880\\ 10000\\ 11900\\ 15400\\ 11900\\ 25700\\ 25700\\ 25700\\ 25700\\ 31200\\ 37200\\ 37200\\ 39900\\ 45100\\ 46800\\ \end{array}$	$\begin{array}{c} 0.62\\ 0.65\\ 0.74\\ 0.80\\ 0.90\\ 1.01\\ 1.32\\ 1.43\\ 1.52\\ 1.62\\ 1.72\\ 1.82\\ 2.03\\ 2.10\\ 2.30\\ 2.49\\ 2.60\\ 2.68\\ 2.75\\ 2.82\\ 2.82\\ 2.91\\ 3.03\\ 3.11\\ \end{array}$	31 10 8 7 8 22 10 10 10 10 8 7 5 5 5	$\begin{array}{c} & 0.1 \\ & 3.7 \\ & 4.8 \\ & 6.5 \\ & 4.7 \\ & 10.1 \\ & 14.0 \\ & 19.8 \\ & 27.4 \\ & 30.1 \\ & 26.8 \\ & 25.4 \\ & 52.3 \\ & 47.4 \\ & 35.8 \end{array}$	0.739 0.783 0.796 0.632 0.525 0.493 0.511	0.396 0.491 0.434 0.457 0.507 0.446 0.517 0.432	$\begin{array}{c} 0.0015\\ 0.0016\\ 0.0021\\ 0.0025\\ 0.0031\\ 0.0040\\ 0.0067\\ 0.0080\\ 0.0102\\ 0.0102\\ 0.0102\\ 0.0160\\ 0.0129\\ 0.0160\\ 0.0262\\ 0.0206\\ 0.0241\\ 0.0262\\ 0.0278\\ 0.0298\\ 0.0298\\ 0.0310\\ 0.0330\\ 0.0338\\ 0.0377\\ \end{array}$	Laminar Lam. & Turb. Turbulent 	None General 	Smooth Local riffles General riffles 	$\{ {\rm T_c=}0.0095 \\ ({\rm Visual}) \\ \{ {\rm T_c=}0.0170 \\ ({\rm ``Model''}) \\ {\rm Run \ No.\ 22} \\ {\rm discarded.} \\ {\rm Non-uniform \ flow.} \\ \label{eq:tau} \}$

See Plate 27.
 All values in English units except grain size in millimeters.
 Width of flume 2.416 ft.
 Dry weight.
 Estimated from weather bureau records.

\$ ×

8

TABLE 17 1

OBSERVED DATA AND COMPUTED RESULTS²

Sand No. 3. Mean Grain Size 0.5246 mm. Uniformity Modulus 0.5385. Test No. 3-0.0010, Slope 0.0010. January 15, 1934.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulie Radius, R Ft.	⁵ WaterTemper- ature,Degrees Centigrade	Mean	velocit . per S . per S . per S	Bottom	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	$\frac{\text{Wave Velocity}}{\sqrt{\text{gD}}}$ Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ I.b./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M. Dimension- less	Tractive Force T I.b. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 222\\ 23\\ 24\\ 25\\ 6\\ 27\\ 28\\ 20\\ 31\\ 1\end{array}$	$\begin{array}{c} 0.004\\ 0.009\\ 0.015\\ 0.020\\ 0.029\\ 0.038\\ 0.049\\ 0.060\\ 0.074\\ 0.090\\ 0.105\\ 0.129\\ 0.145\\ 0.163\\ 0.207\\ 0.235\\ 0.163\\ 0.207\\ 0.235\\ 0.260\\ 0.299\\ 0.331\\ 0.399\\ 0.3399\\ 0.3399\\ 0.470\\ 0.587\\ 0.729\\ 0.870\\ 0.587\\ 0.729\\ 0.870\\ 0.587\\ 0.729\\ 0.870\\ 0.1050\\ 1.260\\ 1.450\\ 1.721\\ 1.975\\ 2.267\\ \end{array}$	$\begin{array}{c} 0.013\\ 0.018\\ 0.021\\ 0.024\\ 0.032\\ 0.044\\ 0.032\\ 0.067\\ 0.067\\ 0.075\\ 0.062\\ 0.088\\ 0.095\\ 0.100\\ 0.108\\ 0.095\\ 0.117\\ 0.126\\ 0.136\\ 0.154\\ 0.239\\ 0.370\\ 0.336\\ 0.438\\ 0.476\\ 0.551\\ 0.523\\ \end{array}$	$\begin{array}{c} 0.031\\ 0.042\\ 0.049\\ 0.056\\ 0.074\\ 0.056\\ 0.074\\ 0.088\\ 0.102\\ 0.113\\ 0.132\\ 0.143\\ 0.155\\ 0.174\\ 0.200\\ 0.231\\ 0.2201\\ 0.2211\\ 0.202\\ 0.315\\ 0.356\\ 0.553\\ 0.646\\ 0.748\\ 0.777\\ 0.856\\ 0.944\\ 0.777\\ 0.856\\ 0.944\\ 1.012\\ 1.101\\ 1.276\\ 0.141\\ 0.121\\ $	$\begin{array}{c} 0.013\\ 0.013\\ 0.021\\ 0.023\\ 0.031\\ 0.031\\ 0.054\\ 0.059\\ 0.063\\ 0.070\\ 0.054\\ 0.059\\ 0.063\\ 0.070\\ 0.082\\ 0.092\\ 0.099\\ 0.106\\ 0.114\\ 0.122\\ 0.136\\ 0.225\\ 0.253\\ 0.225\\ 0.225\\ 0.225\\ 0.225\\ 0.2337\\ 0.374\\ 0.374\\ 0.3406 \end{array}$	$\begin{array}{c} 15.0\\ 14.5\\ 14.5\\ 15.0\\ 15.3\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.3\\ 16.5\\ 16.5\\ 16.5\\ 16.5\\ 17.5\\ 16.6\\ 16.4\\ 16.4\\ 16.4\\ 16.4\\ 17.0\\$	$\begin{array}{c} 0.11\\ 0.22\\ 0.30\\ 0.30\\ 0.43\\ 0.43\\ 0.53\\ 0.53\\ 0.56\\ 0.68\\ 0.77\\ 0.80\\ 0.90\\ 0.96\\ 1.00\\ 0.96\\ 1.00\\ 0.96\\ 1.00\\ 0.96\\ 1.03\\ 1.10\\ 0.90\\ 0.96\\ 1.21\\ 1.32\\ 1.56\\ 1.57\\$	$\begin{array}{c} 0.15\\ 0.27\\ 0.41\\ 0.52\\ 0.60\\ 0.65\\ 0.65\\ 0.60\\ 0.70\\ 0.70\\ 0.91\\ 1.13\\ 1.17\\ 1.24\\ 1.28\\ 1.36\\ 1.61\\ 1.61\\ 1.27\\ 1.61\\ 1.56\\$	$\begin{array}{c} 0.74\\ 0.80\\ 0.92\\ 0.82\\ 0.82\\ 0.97\\ 1.03\\ 1.05\\ 1.16\\ 1.15\\ 1.16\\ 0.97\\ 0.93\\ 0.95\\ 1.16\\ 1.16\\ 1.16\\ 1.10\\ 1.06\\ 1.10\\ 1.06\\ 1.10\\ 1.23\\ 1.23\\ 1.46\end{array}$	$\begin{array}{c} 0.0227\\ 0.6140\\ 0.0120\\ 0.0120\\ 0.0122\\ 0.0120\\ 0.0121\\ 0.0112\\ 0.0117\\ 0.0121\\ 0.0111\\ 0.0108\\ 0.0111\\ 0.0109\\ 0.0107\\ 0.0107\\ 0.0107\\ 0.0107\\ 0.0107\\ 0.0110\\ 0.0112\\ 0.0112\\ 0.0112\\ 0.0153\\ 0.0153\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0159\\ 0.0158\\ 0.0165\\ 0.0168\\ 0.0165\\ 0.0168\\ 0.0165\\ 0.0168\\ 0.0165\\ 0.0168\\$	$\begin{array}{c} 0.002\\ 0.004\\ 0.006\\ 0.012\\ 0.012\\ 0.020\\ 0.025\\ 0.031\\ 0.037\\ 0.052\\ 0.052\\ 0.052\\ 0.074\\ 0.093\\ 0.066\\ 0.074\\ 0.093\\ 0.102\\ 0.116\\ 0.128\\ 0.168\\ 0.247\\ 0.291\\ 0.247\\ 0.291\\ 0.345\\ 0.404\\ 0.527\\ 0.579\\ 0.639\end{array}$	$\begin{array}{c} 120\\ 310\\ 310\\ 500\\ 700\\ 990\\ 1290\\ 2090\\ 2560\\ 3110\\ 3620\\ 4470\\ 4970\\ 5550\\ 6450\\ 7810\\ 8630\\ 9820\\ 13000\\ 14400\\ 13000\\ 14400\\ 12500\\ 249000\\ 24900\\ 24900\\ 34700\\ 38900\\ 34700\\ 38900\\ 45300\\ 45300\\ 45700\\ 54800\\ 54800\\ \end{array}$	$\begin{array}{c} 0.65\\ 0.76\\ 0.82\\ 0.88\\ 1.02\\ 1.11\\ 1.19\\ 1.26\\ 1.35\\ 1.41\\ 1.56\\ 1.63\\ 1.69\\ 1.75\\ 1.80\\ 1.87\\ 1.80\\ 1.87\\ 1.94\\ 2.02\\ 2.10\\ 2.22\\ 2.79\\ 3.22\\ 2.79\\ 3.22\\ 3.36\\ 3.46\\ 3.62\\ 3.76\\ 3.92\\ 4.29\end{array}$		0.05 0.03 0.2 0.2 0.5 1.0 2.0 0 3.1 1.1 4.2 9 12.0 18.3 30.5 31.9	0.675 0.687 0.694 0.694 0.694 0.639 0.643 0.604 0.639 0.484 0.530 0.489 0.536 0.489 0.536 0.483 0.533 0.520 0.481 0.533	$\begin{array}{c} 0.564\\ 0.549\\ 0.571\\ 0.557\\ 0.553\\ 0.583\\ 0.656\\ 0.590\\ 0.565\\ 0.596\\ 0.599\\ 0.554\\ 0.534\\ 0.584\\ 0.584\\ 0.584\end{array}$	$\begin{array}{c} 0.0008\\ 0.0011\\ 0.0013\\ 0.0015\\ 0.0020\\ 0.0024\\ 0.0027\\ 0.0031\\ 0.0036\\ 0.0039\\ 0.0042\\ 0.0047\\ 0.0055\\ 0.0059\\ 0.0055\\ 0.0059\\ 0.0065\\ 0.0067\\ 0.0065\\ 0.0067\\ 0.0065\\ 0.0079\\ 0.0085\\ 0.0067\\ 0.0079\\ 0.0085\\ 0.0079\\ 0.0085\\ 0.0079\\ 0.0025\\ 0.0023\\ 0.0023\\ 0.0238\\ 0.0238\\ 0.0238\\ 0.0238\\ 0.0384\\ 0.0384\\ 0.0384\\ 0.0384\\ 0.0384\\ 0.0388\\ 0.0384\\ 0.0388\\$	Laminar Turbulent 	None Very weak Weak Weak Medium General 	Smooth 	${T_{c}=0.0085}$ (Visual) ${T_{c}=0.0198}$ (''Model'')

See Plate 28.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

66

÷.

x²

TABLE 18¹

Observed Data and Computed Results²

Sand No. 3. Mean Grain Size 0.5246 mm. Uniformity Modulus 0.5385. Test No. 3-0.0015. Slope 0.0015. December 19, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft	Water Temper- ature, Degrees Centigrade	Mean	Velocit . per S estrate S	Bottom	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity VgD Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\9\\20\\21\\22\\23\\4\\25\end{array}$	$\begin{array}{c} 0.006\\ 0.007\\ 0.008\\ 0.011\\ 0.014\\ 0.018\\ 0.025\\ 0.038\\ 0.045\\ 0.038\\ 0.045\\ 0.058\\ 0.077\\ 0.085\\ 0.085\\ 0.105\\ 0.115\\ 0.115\\ 0.120\\ 0.140\\ 0.176\\ 0.176\\ 0.126\\ 0.210\\ 0.$	$\begin{array}{c} 0.016\\ 0.017\\ 0.018\\ 0.029\\ 0.021\\ 0.025\\ 0.028\\ 0.035\\ 0.040\\ 0.045\\ 0.052\\ 0.054\\ 0.055\\ 0.058\\ 0.055\\ 0.058\\ 0.064\\ 0.067\\ 0.072\\ 0.076\\ 0.076\\ 0.081\\ 0.087\\ 0.092\\ 0.$	$\begin{array}{c} 0.037\\ 0.039\\ 0.042\\ 0.042\\ 0.053\\ 0.065\\ 0.065\\ 0.072\\ 0.081\\ 0.093\\ 0.121\\ 0.125\\ 0.127\\ 0.134\\ 0.125\\ 0.127\\ 0.134\\ 0.165\\ 0.167\\ 0.176\\ 0.176\\ 0.176\\ 0.201\\ 0.213\\ 0.201\\ 0.213\\ 0.201\\ 0.213\\ 0.201\\ 0.213\\ 0.201\\ 0.201\\ 0.213\\ 0.201\\ 0.$	$\begin{array}{c} 0.016\\ 0.017\\ 0.018\\ 0.019\\ 0.021\\ 0.023\\ 0.024\\ 0.039\\ 0.034\\ 0.039\\ 0.043\\ 0.050\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.0661\\ 0.068\\ 0.071\\ 0.068\\ 0.071\\ 0.081\\ 0.085\\ 0.081\\ 0.085\\ 0.001\\ 0.085\\ 0.001\\ 0.085\\ 0.001\\ 0.001\\ 0.000\\ 0$	$\begin{array}{c} 18.0\\ 18.0\\ 18.0\\ 18.0\\ 18.0\\ 18.0\\ 19.0\\ 19.0\\ 19.0\\ 19.2\\ 19.2\\ 19.2\\ 19.4\\ 18.1\\ 19.0\\ 10.0\\$	$\begin{array}{c} 0.16\\ 0.17\\ 0.19\\ 0.24\\ 0.35\\ 0.39\\ 0.41\\ 0.46\\ 0.49\\ 0.56\\ 0.64\\ 0.68\\ 0.63\\ 0.66\\ 0.69\\ 0.71\\ 0.74\\ 0.78\\ 0.80\\ 0.85\\ 0.87\\ 0.92\\$	$\begin{array}{c} 0.34\\ 0.36\\ 0.41\\ 0.45\\ 0.59\\ 0.59\\ 0.64\\ 0.75\\ 0.86\\ 0.82\\ 0.86\\ 0.90\\ 0.93\\ 0.99\\ 1.03\\ 1.09\\ 1.14\\ 1.17\\ 1.29\\ \end{array}$	0.84 0.84 0.84 0.85 0.85 0.89 0.91 0.92 0.93 0.94	$\begin{array}{c} 0.0217\\ 0.0224\\ 0.0203\\ 0.0169\\ 0.0152\\ 0.0136\\ 0.0137\\ 0.0132\\ 0.0136\\ 0.0137\\ 0.0132\\ 0.0128\\ 0.0128\\ 0.0128\\ 0.0128\\ 0.0122\\ 0.01128\\ 0.0122\\ 0.0122\\ 0.0122\\ 0.0122\\ 0.0122\\ 0.0122\\ 0.0122\\ 0.0124\\ 0.0125\\ 0.0123$	$\begin{array}{c} 0.003\\ 0.003\\ 0.003\\ 0.004\\ 0.006\\ 0.008\\ 0.009\\ 0.011\\ 0.012\\ 0.032\\ 0.033\\ 0.033\\ 0.033\\ 0.036\\ 0.033\\ 0.043\\ 0.043\\ 0.043\\ 0.057\\ 0.057\\ 0.065\\ 0.071\\ 0.077\\ 0.065\end{array}$	$\begin{array}{c} 230\\ 240\\ 290\\ 400\\ 530\\ 690\\ 780\\ 780\\ 1130\\ 1430\\ 1710\\ 2200\\ 3210\\ 3220\\ 3220\\ 3220\\ 3280\\ 3280\\ 3280\\ 3280\\ 3280\\ 5150\\ 5850\\ 6400\\ 7020\\ 7640$ 7640\\ 7640\\ 7640 7640\\ 7640 7640\\ 7640 7640\\ 7640 7640\\ 7640 7640 7640\\ 7640 7640 7640 7640 7640 7640 7640 7640 7640 7640 7640 7640 7640 7640 7640 7640 7640 7640 7640	0.72 0.74 0.76 0.78 0.82 0.90 0.95 1.00 1.03 1.27 1.29 1.32 1.33 1.37 1.39 1.43 1.43 1.47 1.52 1.56 1.67 1.67 1.72	61 60	0.1	0.769	0.536	$\begin{array}{c} 0.0015\\ 0.0016\\ 0.0017\\ 0.0018\\ 0.0020\\ 0.0022\\ 0.0023\\ 0.0022\\ 0.0023\\ 0.0026\\ 0.0029\\ 0.0033\\ 0.0042\\ 0.0042\\ 0.0051\\ 0.0051\\ 0.0051\\ 0.0056\\ 0.0063\\ 0.0067\\ 0.0071\\ 0.0076\\ 0.0071\\ 0.0086\\ 0.0086\end{array}$	Laminar Lam. & Turb. Turbulent 	None Very weak Weak Medium	Smooth	$\left\{ T_{c} = 0.0090 \\ C_{c} = 0.0090 \right\}$
$25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30$	$\begin{array}{c} 0.210 \\ 0.240 \\ 0.250 \\ 0.275 \\ 0.345 \\ 0.450 \end{array}$	$\begin{array}{c} 0.099\\ 0.105\\ 0.109\\ 0.116\\ 0.194\\ 0.227\end{array}$	$\begin{array}{c} 0.229 \\ 0.243 \\ 0.252 \\ 0.269 \\ 0.449 \\ 0.525 \end{array}$	$\begin{array}{c} 0.091 \\ 0.096 \\ 0.100 \\ 0.106 \\ 0.166 \\ 0.190 \end{array}$	$ 19.4 \\ 19.5 \\ 19.0 \\ 10.0$	$\begin{array}{c} 0.92 \\ 0.99 \\ 0.99 \\ 1.02 \\ 0.77 \\ 0.86 \end{array}$	$1.22 \\ 1.25 \\ 1.28 \\ 1.34 \\ 1.02 \\ 1.07$	1.09 1.10 1.10 1.11 0.78	$\begin{array}{c} 0.0128 \\ 0.0123 \\ 0.0124 \\ 0.0126 \\ 0.0226 \\ 0.0222 \end{array}$	$\begin{array}{c} 0.084 \\ 0.095 \\ 0.099 \\ 0.108 \\ 0.127 \\ 0.163 \end{array}$	$7640 \\8700 \\8930 \\9770 \\11500 \\14700$	$ \begin{array}{r} 1.79 \\ 1.84 \\ 1.93 \\ 2.50 \\ 2.70 \\ \end{array} $	$ \begin{array}{r} 40 \\ 30 \\ 30 \\ 61 \\ 73 \end{array} $	$1.2 \\ 1.7 \\ 1.6 \\ 2.6 \\ 0.5 \\ 0.6$	$\begin{array}{c} 0.641 \\ 0.632 \\ 0.665 \\ 0.530 \\ 0.515 \\ 0.517 \end{array}$	$\begin{array}{c} 0.572 \\ 0.563 \\ 0.539 \\ 0.599 \\ 0.577 \\ 0.566 \end{array}$	$\begin{array}{c} 0.0093 \\ 0.0098 \\ 0.0102 \\ 0.0109 \\ 0.0182 \\ 0.0213 \end{array}$	** ** ** ** **	General	Local riffles General riffles	(Visual)
$31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36$	$\begin{array}{c} 0.580 \\ 0.720 \\ 0.860 \\ 1.030 \\ 1.225 \\ 1.475 \end{array}$	$\begin{array}{c} 0.249 \\ 0.260 \\ 0.281 \\ 0.316 \\ 0.388 \\ 0.441 \end{array}$	$\begin{array}{c} 0.576 \\ 0.602 \\ 0.650 \\ 0.730 \\ 0.897 \\ 1.020 \end{array}$	$\begin{array}{c} 0.205 \\ 0.213 \\ 0.226 \\ 0.248 \\ 0.291 \\ 0.320 \end{array}$	$18.5 \\ 18.5 \\ 19.0 \\ 18.5 \\ $	$1.01 \\ 1.20 \\ 1.32 \\ 1.41 \\ 1.37 \\ 1.45$	$\begin{array}{c} 1.27 \\ 1.49 \\ 1.68 \\ 1.84 \\ 1.91 \\ 1.89 \end{array}$	$\begin{array}{c} 0.83 \\ 0.88 \\ 1.03 \\ 1.07 \\ 0.94 \\ 1.07 \end{array}$	$\begin{array}{c} 0.0199\\ 0.0171\\ 0.0162\\ 0.0162\\ 0.0189\\ 0.0187\end{array}$	$\begin{array}{c} 0.206 \\ 0.255 \\ 0.301 \\ 0.350 \\ 0.391 \\ 0.462 \end{array}$	$\begin{array}{c} 18400 \\ 22800 \\ 27300 \\ 31200 \\ 34900 \\ 41200 \end{array}$	2.83 2.89 3.00 3.18 3.53 3.76	$\begin{array}{c} 62 \\ 77 \\ 63 \\ 70 \\ 58 \\ 46 \end{array}$	$3.3 \\ 7.0 \\ 9.4 \\ 19.5 \\ 22.2 \\ 41.8$	$\begin{array}{c} 0.488\\ 0.532\\ 0.497\\ 0.542\\ 0.560\\ 0.559\end{array}$	$\begin{array}{c} 0.588 \\ 0.547 \\ 0.580 \\ 0.524 \\ 0.500 \\ 0.520 \end{array}$	$ \begin{smallmatrix} 0.0233 \\ 0.0244 \\ 0.0263 \\ 0.0296 \\ 0.0363 \\ 0.0413 \end{smallmatrix} $	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	42 24 24 44 44	Large riffles	("Model")

¹ See Plate 28.

te 28. 2 A

\$

ź

² All values in English units except grain size in millimeters.

³ Width of flume 2.313 ft.

4 Dry weight.

8

ŧ

OBSERVED DATA AND COMPUTED RESULTS 2

Sand No. 3. Mean Grain Size 0.5246 mm. Uniformity Modulus 0.5385. Test No. 3-0.0020. Slope 0.0020. January 26-31, 1934.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ ross-section, A Sq. Ft.	Hydraulie Radius, R Ft.	ater Temper- ture, Degrees Centigrade	V Ft Wean	velocit . per S eogun	y ec.	danning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	/ave Velocity vgD Ft. per Sec.	angth of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Jean Size of rupped Sand dg. mm.	Uniformity Modulus of rapped Sand, I, Dimension- less	active Force T b. per Sq. Ft.	ature of Flow	ature of Sand Movement	Condition of Bed	Remarks
			õ		j≩ ē	in a second s	- xo	m (4		9	 × ¬	Ľ,		ME	E HZ	5 3	ž	z		
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\9\\0\\111\\12\\21\\33\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\end{array}$	$\begin{array}{c} 0.005\\ 0.007\\ 0.009\\ 0.011\\ 0.013\\ 0.014\\ 0.016\\ 0.029\\ 0.029\\ 0.036\\ 0.042\\ 0.036\\ 0.042\\ 0.064\\ 0.060\\ 0.075\\ 0.093\\ 0.111\\ 0.130\\ 0.150\\ 0.150\\ 0.251\\ 0.206\\ 0.251\\ 0.281\\ 0.318\\ \end{array}$	$\begin{array}{c} 0.012\\ 0.013\\ 0.014\\ 0.015\\ 0.016\\ 0.017\\ 0.019\\ 0.021\\ 0.026\\ 0.032\\ 0.032\\ 0.035\\ 0.036\\ 0.041\\ 0.046\\ 0.051\\ 0.046\\ 0.066\\ 0.061\\ 0.066\\ 0.078\\ 0.127\\ 0.142\\ 0.156\end{array}$	$\begin{array}{c} 0.028\\ 0.028\\ 0.030\\ 0.032\\ 0.032\\ 0.035\\ 0.039\\ 0.042\\ 0.044\\ 0.049\\ 0.056\\ 0.060\\ 0.060\\ 0.060\\ 0.067\\ 0.074\\ 0.083\\ 0.095\\ 0.106\\ 0.118\\ 0.083\\ 0.095\\ 0.106\\ 0.118\\ 0.133\\ 0.180\\ 0.141\\ 0.153\\ 0.180\\ 0.204\\ 0.224\\ 0.224\\ 0.329\\ 0.361\end{array}$	$\begin{array}{c} 0.012\\ 0.013\\ 0.013\\ 0.014\\ 0.015\\ 0.016\\ 0.017\\ 0.018\\ 0.021\\ 0.023\\ 0.025\\ 0.029\\ 0.028\\ 0.031\\ 0.035\\ 0.044\\ 0.049\\ 0.053\\ 0.044\\ 0.049\\ 0.053\\ 0.058\\ 0.062\\ 0.073\\ 0.082\\ 0.115\\ 0.127\\ 0.137\\ 0.127\\ 0.137\\ 0.$	$\begin{array}{c} 16.0\\ 16.0\\ 16.0\\ 16.0\\ 16.0\\ 16.5\\ 16.5\\ 16.5\\ 16.5\\ 16.0\\ 16.4\\ 16.3\\ 16.3\\ 16.3\\ 16.3\\ 16.3\\ 16.3\\ 16.3\\ 16.3\\ 16.5\\ 16.7\\ 16.7\\ 16.7\\ 16.8\\ 16.8\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.1\\ \end{array}$	$\begin{array}{c} 0.18\\ 0.23\\ 0.27\\ 0.32\\ 0.36\\ 0.36\\ 0.42\\ 0.43\\ 0.45\\ 0.54\\ 0.58\\ 0.63\\ 0.70\\ 0.56\\ 0.63\\ 0.70\\ 0.86\\ 0.92\\ 0.98\\ 1.01\\ 1.01\\ 0.85\\ 0.68\\ 0.88\\ \end{array}$	$\begin{array}{c} 0.27\\ 0.35\\ 0.41\\ 0.51\\ 0.56\\ 0.68\\ 0.68\\ 0.68\\ 0.69\\ 0.70\\ 0.71\\ 0.84\\ 0.91\\ 1.09\\ 1.12\\ 1.20\\ 1.28\\ 1.36\\ 1.12\\ 1.10\\ 1.14\\ 1.14 \end{array}$	0.83 0.83 0.93 1.07 0.93 0.86 0.86	$\begin{array}{c} 0.0187\\ 0.0157\\ 0.0157\\ 0.0126\\ 0.0114\\ 0.0116\\ 0.0116\\ 0.0116\\ 0.0120\\ 0.0126\\ 0.0116\\ 0.0126\\ 0.0116\\ 0.0126\\ 0.0110\\ 0.0124\\ 0.0119\\ 0.0113\\ 0.0113\\ 0.0113\\ 0.0106\\ 0.0113\\ 0.0106\\ 0.0113\\ 0.0123\\ 0.0184\\ 0.0196\\ 0.0201\\ 0.001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.$	$\begin{array}{c} 0.002\\ 0.003\\ 0.004\\ 0.005\\ 0.006\\ 0.006\\ 0.007\\ 0.008\\ 0.009\\ 0.010\\ 0.012\\ 0.015\\ 0.015\\ 0.015\\ 0.015\\ 0.015\\ 0.015\\ 0.025\\ 0.039\\ 0.025\\ 0.039\\ 0.046\\ 0.053\\ 0.061\\ 0.075\\ 0.083\\ 0.098\\ 0.109\\ 0.121\\ \end{array}$	$\begin{array}{c} 180\\ 240\\ 320\\ 390\\ 470\\ 560\\ 660\\ 750\\ 880\\ 1040\\ 1250\\ 1270\\ 1460\\ 1660\\ 1900\\ 2110\\ 2630\\ 3280\\ 3280\\ 3280\\ 3280\\ 3280\\ 3280\\ 3280\\ 3280\\ 3280\\ 3280\\ 3880\\ 8250\\ 9040\\ 10100\\ \end{array}$	$\begin{array}{c} 0.62\\ 0.65\\ 0.67\\ 0.70\\ 0.72\\ 0.74\\ 0.76\\ 0.78\\ 0.82\\ 0.92\\ 0.98\\ 0.92\\ 1.06\\ 1.08\\ 1.15\\ 1.22\\ 1.28\\ 1.34\\ 1.40\\ 1.46\\ 1.59\\ 1.68\\ 2.02\\ 2.14\\ 0.22\\ 1.28\\ 1.34\\ 0.22\\ 0.98\\ 0.97\\ 0.98\\ 0.97\\ 0.98\\$	71 63 86 40 38 60 30 31	0.03 0.1 0.3 2.6 2.7 2.1	0.784 0.776 0.721 0.656 0.629 0.501 0.488 0.505	0.478 0.428 0.458 0.576 0.560 0.609 0.598 0.578	$\begin{array}{c} 0.0015\\ 0.0016\\ 0.0016\\ 0.0017\\ 0.0019\\ 0.0021\\ 0.0021\\ 0.0022\\ 0.0032\\ 0.0032\\ 0.0032\\ 0.0030\\ 0.0032\\ 0.0037\\ 0.0040\\ 0.0040\\ 0.0044\\ 0.0045\\ 0.0051\\ 0.0051\\ 0.0051\\ 0.0051\\ 0.0051\\ 0.0076\\ 0.0076\\ 0.0082\\ 0.0097\\ 0.00110\\ 0.0159\\ 0.0117\\ 0.0159\\ 0.0177\\ 0.0195\\ 0.0177\\ 0.0195\\ 0.0177\\ 0.0195\\ 0.0177\\ 0.0195\\ 0.0177\\ 0.0195\\ 0.0177\\ 0.0195\\ 0.0177\\ 0.0195\\ 0.0177\\ 0.0195\\ 0.011\\ 0.0115\\ 0.011\\ 0.0115\\ 0.011\\ 0.001\\ 0.011$	Laminar Lam. & Turb. Turbulent 	None 	Smooth 	$\begin{cases} T_{e} = 0.0090 \\ (Visual) \\ T_{e} = 0.0160 \\ (''Model'') \end{cases}$
28 29 30 31 32 33 34	$\begin{array}{c} 0.325 \\ 0.410 \\ 0.631 \\ 0.770 \\ 0.930 \\ 1.130 \\ 1.351 \end{array}$	$\begin{array}{c} 0.162 \\ 0.178 \\ 0.215 \\ 0.219 \\ 0.231 \\ 0.278 \\ 0.329 \end{array}$	$\begin{array}{c} 0.375 \\ 0.412 \\ 0.498 \\ 0.506 \\ 0.534 \\ 0.643 \\ 0.761 \end{array}$	$\begin{array}{c} 0.142 \\ 0.154 \\ 0.181 \\ 0.184 \\ 0.193 \\ 0.224 \\ 0.256 \end{array}$	$ \begin{array}{r} 10.8 \\ 16.1 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ \end{array} $	$\begin{array}{c} 0.87 \\ 1.00 \\ 1.27 \\ 1.52 \\ 1.74 \\ 1.76 \\ 1.78 \end{array}$	$\begin{array}{c} 1.08\\ 1.20\\ 1.67\\ 1.92\\ 1.94\\ 2.04\\ 2.13\end{array}$	$\begin{array}{c} 0.36\\ 0.86\\ 0.68\\ 0.97\\ 1.23\\ 1.26\\ 1.33\end{array}$	$\begin{array}{c} 0.0209\\ 0.0193\\ 0.0168\\ 0.0142\\ 0.0128\\ 0.0139\\ 0.0158\end{array}$	$ \begin{vmatrix} 0.123 \\ 0.123 \\ 0.231 \\ 0.280 \\ 0.336 \\ 0.394 \\ 0.455 \end{vmatrix} $	8950 12800 19200 23300 28000 32800 37900	$2.24 \\ 2.28 \\ 2.39 \\ 2.63 \\ 2.65 \\ 2.72 \\ 2.99 \\ 3.25$	$ \begin{array}{r} 30 \\ 30 \\ 40 \\ 30 \\ 51 \\ 30 \\ 30 \\ 30 \end{array} $	2.6 1.1 12.0 18.6 38.4 45.8 50.2	$\begin{array}{c} 0.503 \\ 0.514 \\ 0.501 \\ 0.509 \\ \hline 0.503 \\ 0.448 \\ 0.449 \end{array}$	$\begin{array}{c} 0.578\\ 0.582\\ 0.604\\ 0.589\\ \hline 0.606\\ 0.633\\ 0.622 \end{array}$	$\begin{array}{c} 0.0195\\ 0.0202\\ 0.0222\\ 0.0269\\ 0.0274\\ 0.0289\\ 0.0347\\ 0.0411 \end{array}$	66 68 68 68 68 68 68 68	24 24 24 24 24 24 24 24	11 14 14 14 14	

See Plate 29.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

¥ 0

89

à ü

TABLE 201 Observed Data and Computed Results² -

ę.,

ë

Sand No. 4. Mean Grain Size 0.5056 mm. Uniformity Mcdulus 0.4063. Test No. 4-0.0010. Slope 0.0010. March 13, 1934.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ² Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	Water Temper- ature, Degrees Centigrade	Tet Weam	Velocit . per 8 . gauge	Bottom	Manning's n	Turbulence Criterion VR	Reynolds' Number R	$\frac{Wave Velocity}{\sqrt{gD}} Ft. per Sec.$	Length of Run Minutes	Rate Sand Movement ⁴ I.b./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trupped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Vature of Flow	Vature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c}1\\1\\2\\3\\4\\4\\5\\6\\7\\7\\8\\9\\9\\10\\11\\12\\23\\14\\15\\16\\17\\7\\18\\9\\20\\22\\23\\24\\25\\26\\27\\8\\29\\30\\0\\31\\1\end{array}$	$\begin{array}{c} 0.005\\ 0.006\\ 0.007\\ 0.010\\ 0.013\\ 0.016\\ 0.022\\ 0.023\\ 0.039\\ 0.050\\ 0.066\\ 0.039\\ 0.050\\ 0.066\\ 0.108\\ 0.085\\ 0.106\\ 0.128\\ 0.250\\ 0.317\\ 0.380\\ 0.250\\ 0.317\\ 0.380\\ 0.245\\ 0.570\\ 0.635\\ 0.781\\ 0.970\\ 0.635\\ 0.781\\ 0.970\\ 1.200\\ 1.485\\ 1.680\\ \end{array}$	$\begin{array}{c} 0.013\\ 0.014\\ 0.015\\ 0.015\\ 0.017\\ 0.018\\ 0.025\\ 0.025\\ 0.025\\ 0.022\\ 0.036\\ 0.049\\ 0.055\\ 0.065\\ 0.072\\ 0.065\\ 0.072\\ 0.085\\ 0.097\\ 0.106\\ 0.113\\ 0.132\\ 0.147\\ 0.167\\ 0.255\\ 0.277\\ 0.306\\ 0.351\\ 0.388\\ 0.424\\ 0.458\\ 0.485\\ 0.487\\ \end{array}$	$\begin{array}{c} 0.030\\ 0.032\\ 0.035\\ 0.035\\ 0.039\\ 0.044\\ 0.046\\ 0.058\\ 0.065\\ 0.074\\ 0.083\\ 0.095\\ 0.113\\ 0.125\\ 0.113\\ 0.125\\ 0.224\\ 0.245\\ 0.224\\ 0.245\\ 0.261\\ 0.305\\ 0.340\\ 0.386\\ 0.589\\ 0.640\\ 0.706\\ 0.811\\ 0.896\\ 0.980\\ 1.060\\ 1.125\\ \end{array}$	$\begin{array}{c} 0.013\\ 0.014\\ 0.015\\ 0.017\\ 0.018\\ 0.019\\ 0.020\\ 0.024\\ 0.027\\ 0.035\\ 0.040\\ 0.035\\ 0.047\\ 0.052\\ 0.068\\ 0.078\\ 0.068\\ 0.078\\ 0.068\\ 0.078\\ 0.068\\ 0.078\\ 0.013\\ 0.118\\ 0.131\\ 0.146\\ 0.209\\ 0.097\\ 0.103\\ 0.118\\ 0.234\\ 0.269\\ 0.234\\ 0.269\\ 0.310\\ 0.310\\ 0.342\\ \end{array}$	$\begin{array}{c} 16.9\\ 17.0\\ 16.8\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 16.8\\ 16.8\\ 16.8\\ 16.8\\ 16.8\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 16.5\\ 16.5\\ 16.5\\ 16.5\\ 16.5\\ 16.5\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.5\\ 17.5\\ 17.8\\ \end{array}$	$\begin{array}{c} 0.17\\ 0.19\\ 0.19\\ 0.21\\ 0.30\\ 0.30\\ 0.38\\ 0.44\\ 0.46\\ 0.38\\ 0.39\\ 0.44\\ 0.46\\ 0.67\\ 0.71\\ 0.77\\ 0.89\\ 0.91\\ 0.96\\ 1.02\\ 0.96\\ 1.04\\ 1.12\\ 0.89\\ 0.90\\ 0.96\\ 1.08\\ 1.22\\ 1.40\\ 1.49\\ 1.42\\ 1.49\\$	$\begin{array}{c} 0.24\\ 0.29\\ 0.29\\ 0.43\\ 0.51\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.56\\ 0.57\\ 0.59\\ 0.64\\ 0.73\\ 0.87\\ 0.91\\ 1.02\\ 1.28\\ 1.37\\ 1.28\\ 1.37\\ 1.41\\ 1.12\\ 1.20\\ 1.30\\ 1.41\\ 1.12\\ 1.41\\ 1.41\\ 1.12\\ 1.41\\$	0.80 0.75 0.85 0.85 0.85 0.85 0.85 0.88 1.14 1.18 1.18 1.23 0.94 0.85 0.85 0.88 0.91 1.23 0.85 0.88 0.91 1.14 1.23	$\begin{array}{c} 0.0152\\ 0.0141\\ 0.0136\\ 0.0124\\ 0.0106\\ 0.0089\\ 0.0089\\ 0.0106\\ 0.0108\\ 0.0106\\ 0.0104\\ 0.0108\\ 0.0104\\ 0.0108\\ 0.0109\\ 0.0106\\ 0.0109\\ 0.0106\\ 0.0109\\ 0.0108\\ 0.0109\\ 0.0108\\ 0.0190\\ 0.0118\\ 0.0190\\ 0.0198\\ 0.0203\\ 0.0198\\ 0.0203\\ 0.0159\\$	$\begin{array}{c} 0.002\\ 0.003\\ 0.003\\ 0.004\\ 0.005\\ 0.007\\ 0.008\\ 0.009\\ 0.011\\ 0.016\\ 0.021\\ 0.035\\ 0.044\\ 0.049\\ 0.049\\ 0.060\\ 0.080\\ 0.080\\ 0.080\\ 0.080\\ 0.080\\ 0.169\\ 0.169\\ 0.169\\ 0.169\\ 0.210\\ 0.259\\ 0.314\\ 0.379\\ 0.456\\ 0.511\end{array}$	$\begin{array}{c} 180\\ 220\\ 270\\ 350\\ 460\\ 590\\ 710\\ 910\\ 1380\\ 1770\\ 2340\\ 2990\\ 4160\\ 5730\\ 6830\\ 7550\\ 8340\\ 10900\\ 12400\\ 14300\\ 15700\\ 12400\\ 14300\\ 18100\\ 22300\\ 23900\\ 32900\\ 32900\\ 39600\\ 44800\\ \end{array}$		 	0,1 0,1 0,1 0,4 1.8 2.5 2.7 0,9 0,8 0,7 1,1 1 4,4 4,9,3 10,9	0.661 0.727 0.697 0.688 0.481 0.478 0.483 0.483 0.475 0.512 0.505	0.420 0.420 0.487 0.483 0.443 0.424 0.420 0.424 0.424 0.425 0.424 0.445 0.444 0.447 0.447 0.4462 0.462	$\begin{array}{c} \textbf{C} \\ 0.0008\\ 0.0009\\ 0.0009\\ 0.0001\\ 0.00012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0022\\ 0.0022\\ 0.0022\\ 0.0022\\ 0.0022\\ 0.0022\\ 0.0005\\ 0.00051\\ 0.0005\\ 0.00051\\ 0.0005\\ 0.00051\\ 0.0005\\ 0.00$	Z Laminar Lam. & Turb. Turbulent 	None 	General riffles	$\{T_{c}=0.0080\\(Visual)\\\{T_{c}=0.0213\\(''Model'')$

¹ See Plate 29. ² All values in English units except grain size in millimeters. ³ Width of flume 2.313 ft. ⁴ Dry weight.

15

0

Observed Data and Computed Results²

Sand No. 4. Mean Grain Size 0.5056 mm Uniformity Modulus 0.4063. Test No. 4-0.0015. Slope 0.0015. March 12, 1934.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	Water Temper- ature, Degrees Centigrade	V Ft Mean	/elocit . per S . ger S	Bottom	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity vgD Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\221\\22\\3\\24\\25\\26\\27\\28\\9\\31\end{array}$	$\begin{array}{c} 0.006\\ 0.007\\ 0.008\\ 0.012\\ 0.015\\ 0.023\\ 0.026\\ 0.038\\ 0.048\\ 0.061\\ 0.070\\ 0.048\\ 0.061\\ 0.070\\ 0.130\\ 0.179\\ 0.253\\ 0.280\\ 0.320\\ 0.320\\ 0.380\\ 0.487\\ 0.580\\ 0.6825\\ 1.000\\ 1.240\\ 0\\ 1.457\\ \end{array}$	$\begin{array}{c} 0.012\\ 0.013\\ 0.014\\ 0.015\\ 0.016\\ 0.017\\ 0.022\\ 0.025\\ 0.025\\ 0.032\\ 0.032\\ 0.042\\ 0.045\\ 0.042\\ 0.045\\ 0.045\\ 0.060\\ 0.060\\ 0.068\\ 0.112\\ 0.088\\ 0.112\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.233\\ 0.247\\ 0.257\\ 0.282\\ 0.316\\ 0.341\\ 0.355\\ 0.375\\ 0.$	$\begin{array}{c} 0.028\\ 0.031\\ 0.032\\ 0.035\\ 0.035\\ 0.035\\ 0.042\\ 0.058\\ 0.061\\ 0.058\\ 0.063\\ 0.074\\ 0.086\\ 0.097\\ 0.105\\ 0.097\\ 0.105\\ 0.097\\ 0.105\\ 0.123\\ 0.140\\ 0.097\\ 0.105\\ 0.226\\ 0.257\\ 0.443\\ 0.501\\ 0.558\\ 0.593\\ 0.5563\\ 0.593\\ 0.651\\ 0.5788\\ 0.829\\ 0.8651\\ 0.788\\ 0.829\\ 0.8651\\ 0.8651\\ 0.8651\\ 0.788\\ 0.829\\ 0.8651\\ 0.829\\ 0.86651\\ 0.8$	$\begin{array}{c} 0.012\\ 0.013\\ 0.014\\ 0.015\\ 0.016\\ 0.017\\ 0.018\\ 0.022\\ 0.025\\ 0.026\\ 0.031\\ 0.036\\ 0.041\\ 0.058\\ 0.063\\ 0.076\\ 0.058\\ 0.076\\ 0.082\\ 0.090\\ 0.101\\ 0.165\\ 0.182\\ 0.194\\ 0.194\\ 0.210\\ 0.226\\ 0.248\\ 0.263\\ 0.274\\ 0.383\\ \end{array}$	$\begin{array}{c} $	$\begin{array}{c} 0.21\\ 0.22\\ 0.23\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.45\\ 0.45\\ 0.45\\ 0.63\\ 0.66\\ 0.79\\ 0.63\\ 0.66\\ 0.79\\ 0.63\\ 0.66\\ 0.79\\ 0.63\\ 0.66\\ 0.79\\ 0.68\\ 0.98\\ 1.04\\ 1.12\\ 1.12\\ 1.12\\ 1.50\\ 1.58\\ 1.68\\ \end{array}$	$\begin{array}{c} 0.33\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.64\\ 0.60\\ 0.50\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.89\\ 0.97\\ 1.03\\ 1.23\\ 0.98\\ 1.03\\ 1.27\\ 1.39\\ 0.98\\ 1.03\\ 1.27\\ 1.39\\ 0.98\\ 1.11\\ 1.12\\ 1.28\\ 1.33\\ 1.47\\ 1.67\\ 1.91\\ 1.2.00\\ 0.5$	0.51 0.58 0.60 1.01 1.05 1.23 1.37 1.47 0.73 0.75 0.75 0.75 0.75 0.75 0.68 0.09 1.23 1.48 1.09 1.23 1.48 1.09	$\begin{array}{c} 0.0139\\ 0.0144\\ 0.0139\\ 0.0124\\ 0.010\\ 0.0098\\ 0.0099\\ 0.0111\\ 0.0107\\ 0.0101\\ 0.0108\\ 0.0107\\ 0.0105\\ 0.0108\\ 0.0106\\ 0.0108\\ 0.0106\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0108\\ 0.0231\\ 0.0234\\ 0.02241\\ 0.00241\\ 0.00241\\ 0.00241\\ 0.00241\\ 0.00241\\ 0.00241\\ 0.0$	$\begin{array}{c} 0.002\\ 0.003\\ 0.003\\ 0.003\\ 0.004\\ 0.005\\ 0.006\\ 0.008\\ 0.010\\ 0.011\\ 0.013\\ 0.016\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.023\\ 0.046\\ 0.053\\ 0.073\\ 0.083\\ 0.073\\ 0.083\\ 0.101\\ 0.110\\ 0.1138\\ 0.155\\ 0.236\\ 0.236\\ 0.236\\ 0.236\\ 0.234\\ 0.410\\ 0.644 \end{array}$	$\begin{smallmatrix} & & & \\ & & $	$\left \begin{array}{c} 0.62\\ 0.62\\ 0.67\\ 0.70\\ 0.72\\ 0.74\\ 0.74\\ 0.74\\ 0.74\\ 0.90\\ 1.02\\ 1.0$		0.5 0.5 0.5 1.0 2.1 4.0 0.3 0.9 2.3 2.2 4.6 5.3 10.4 30.0 30.7	0.658 0.759 0.779 0.678 0.678 0.499 0.468 0.499 0.468 0.499 0.468 0.499 0.475 0.475 0.470 0.475 0.473 0.473 0.434	0.446 0.462 0.476 0.476 0.476 0.476 0.476 0.414 0.427 0.442 0.427 0.442 0.438 0.395 0.395 0.460 0.501 0.475	$\begin{array}{c} 0.0011\\ 0.0013\\ 0.0013\\ 0.0013\\ 0.0013\\ 0.0013\\ 0.0014\\ 0.0015\\ 0.0021\\ 0.0021\\ 0.0025\\ 0.0030\\ 0.0039\\ 0.0042\\ 0.0030\\ 0.0056\\ 0.00656\\ 0.0083\\ 0.0056\\ 0.00656\\ 0.0083\\ 0.0056\\ 0.00656\\ 0.0083\\ 0.0056\\ 0.0022\\ 0.0155\\ 0.00241\\ 0.0224\\ 0.0224\\ 0.0224\\ 0.02241\\ 0.02241\\ 0.02241\\ 0.0224\\ 0.02320\\ 0.0336\\ 0.0351\\ \end{array}$	Laminar Lam, & Turb. Turbulent 	None Weak Medium General 	Smooth 	$\{ \begin{array}{l} Tc = 0.0083 \\ (Visual) \end{array} \\ \left\{ \begin{array}{l} T_c = 0.0219 \\ (`Model'') \\ Results from \\ Runs 30 and \\ 31 discarded \\ because of \\ non-uniform \end{array} \right. \label{eq:stars}$

See Plate 30.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

4 -

\$ D

TABLE 22 1

Observed Data and Computed Results²

Sand No. 4. Mean Grain Size 0.5056 mm. Uniformity Modulus 0.4063. Test No. 4-0.0020. Slope 0.0020. February 12-15, 1934.

¢

ŧ

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	Water Temper- ature, Degrees Centigrade	V Ft.	velocity per S eografication source S	Bottom	Manning's n	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity vgD Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M. Dimension- less	Tractive Force Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\11\\1\\2\\14\\15\\16\\7\\8\\9\\0\\11\\2\\14\\15\\6\\7\\8\\9\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	$\begin{array}{c} 0.006\\ 0.008\\ 0.009\\ 0.011\\ 0.014\\ 0.016\\ 0.024\\ 0.027\\ 0.032\\ 0.045\\ 0.058\\ 0.045\\ 0.058\\ 0.068\\ 0.081\\ 0.095\\ 0.110\\ 0.126\\ 0.145\\ 0.152\\ 0.126\\ 0.145\\ 0.126\\ 0.145\\ 0.126\\ 0.145\\ 0.126\\ 0.145\\ 0.$	$\begin{array}{c} 0.013\\ 0.014\\ 0.015\\ 0.016\\ 0.017\\ 0.018\\ 0.019\\ 0.022\\ 0.024\\ 0.027\\ 0.030\\ 0.038\\ 0.042\\ 0.046\\ 0.052\\ 0.055\\ 0.061\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.061\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.061\\ 0.066\\ 0.056\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.056\\ 0.066\\ 0.$			$\begin{array}{c} 14.0\\ 13.9\\ 13.2\\ 14.3\\ 14.4\\ 14.8\\ 15.0\\ 14.0\\ 14.5\\ 15.0\\ 15.1\\ 15.2\\ 15.3\\$	$\begin{array}{c} 0.21\\ 0.23\\ 0.26\\ 0.29\\ 0.35\\ 0.39\\ 0.46\\ 0.49\\ 0.51\\ 0.59\\ 0.65\\ 0.70\\ 0.76\\ 0.79\\ 0.87\\ 0.89\\ 0.95\\ 0.51\\ 0.89\\ 0.95\\ 0.51\\ 0.89\\ 0.95\\ 0.51\\ 0.89\\ 0.95\\ 0.51\\ 0.89\\ 0.95\\ 0.51\\ 0.89\\ 0.95\\ 0.51\\ 0.51\\ 0.89\\ 0.95\\ 0.51\\ 0.51\\ 0.89\\ 0.95\\ 0.51\\$	$\begin{array}{c} 0.34\\ 0.36\\ 0.42\\ 0.45\\ 0.52\\ 0.52\\ 0.67\\ 0.67\\ 0.67\\ 0.67\\ 0.76\\ 0.83\\ 0.98\\ 0.94\\ 1.01\\ 1.05\\ 1.09\\ 1.14\\ 0.5\\ 0.91\\ $		$\begin{array}{c} 0.0174\\ 0.0161\\ 0.0151\\ 0.0139\\ 0.0121\\ 0.0114\\ 0.0101\\ 0.0111\\ 0.0115\\ 0.0112\\ 0.0114\\ 0.0112\\ 0.0114\\ 0.0100\\ 0.0114\\ 0.0108\\ 0.0111\\ 0.0100\\ 0.0110\\ 0.0100\\ 0.0110\\ 0.0010\\ 0.0010\\ 0.0010\\ 0.000\\$		$\begin{array}{c} 210\\ 250\\ 370\\ 470\\ 560\\ 790\\ 910\\ 1080\\ 1340\\ 1550\\ 1970\\ 2330\\ 2760\\ 3220\\ 3720\\ 4240\\ 4840\\ \end{array}$	$\begin{array}{c} 0.65\\ 0.67\\ 0.69\\ 0.72\\ 0.74\\ 0.76\\ 0.77\\ 0.84\\ 0.88\\ 1.03\\ 1.01\\ 1.16\\ 1.22\\ 1.29\\ 1.33\\ 1.40\\ 1.46\\ \end{array}$		0.2	0.820	0.490	$\begin{array}{c} 0.0016\\ 0.0017\\ 0.0019\\ 0.0020\\ 0.0022\\ 0.0023\\ 0.0027\\ 0.0030\\ 0.0034\\ 0.0034\\ 0.0047\\ 0.0041\\ 0.0047\\ 0.0055\\ 0.0065\\ 0.0065\\ 0.0065\\ 0.0066\\ 0.0076\\ 0.0083\\ \end{array}$	Laminar Lam. & Turb. Turbulent 	None 	Smooth 	{T _c =0.0090
$20 \\ 21 \\ 22 \\ 23 \\ 24$	$\begin{array}{c} 0.170 \\ 0.186 \\ 0.226 \\ 0.226 \\ 0.320 \end{array}$	$\begin{array}{c} 0.073 \\ 0.078 \\ 0.089 \\ 0.148 \\ 0.177 \end{array}$	$\begin{array}{c} 0.169 \\ 0.180 \\ 0.206 \\ 0.342 \\ 0.409 \end{array}$	$\begin{array}{c c} 0.069 \\ 0.073 \\ 0.083 \\ 0.131 \\ 0.153 \end{array}$	$15.3 \\ $	$ 1.01 \\ 1.03 \\ 1.10 \\ 0.66 \\ 0.78 $	$1.25 \\ 1.28 \\ 1.37 \\ 0.85 \\ 0.94$	$1.10 \\ 1.23 \\ 0.55 \\ 0.61$	$\begin{array}{c} 0.0111\\ 0.0113\\ 0.0115\\ 0.0259\\ 0.0242 \end{array}$	$\begin{array}{c} 0.069 \\ 0.075 \\ 0.091 \\ 0.086 \\ 0.120 \end{array}$	$5670 \\ 6170 \\ 7450 \\ 7090 \\ 9840$	$ \begin{array}{r} 1.53 \\ 1.58 \\ 1.69 \\ 2.18 \\ 2.39 \end{array} $	53 35 20 60 60	$ \begin{array}{r} 1.3 \\ 2.1 \\ 4.3 \\ 0.0 \\ 0.8 \\ \end{array} $	0.765 0.736 0.673 0.386	$0.508 \\ 0.509 \\ 0.445 \\ 0.393$	$\begin{array}{c} 0.0091 \\ 0.0097 \\ 0.0111 \\ 0.0185 \\ 0.0221 \end{array}$	24 44 34 54	Medium Weak	Local riffles General riffles	(Visual)
$25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32$	$\begin{array}{c} 0.360\\ 0.467\\ 0.595\\ 0.717\\ 0.850\\ 1.051\\ 1.250\\ 1.470\\ \end{array}$	$\begin{array}{c} 0.194 \\ 0.218 \\ 0.241 \\ 0.263 \\ 0.287 \\ 0.299 \\ 0.305 \\ 0.344 \end{array}$	$\begin{array}{c} 0.448\\ 0.504\\ 0.556\\ 0.607\\ 0.663\\ 0.690\\ 0.704\\ 0.794 \end{array}$	$\begin{array}{c} 0.166\\ 0.183\\ 0.199\\ 0.214\\ 0.230\\ 0.231\\ 0.241\\ 0.265\end{array}$	$\begin{array}{c} 15.4 \\ 15.6 \\ 15.6 \\ 15.6 \\ 15.6 \\ 15.7 \\ 16.0 \\ 16.0 \\ 16.0 \end{array}$	$\begin{array}{c} 0.80 \\ 0.93 \\ 1.07 \\ 1.18 \\ 1.28 \\ 1.53 \\ 1.78 \\ 1.85 \end{array}$	$1.05 \\ 1.16 \\ 1.35 \\ 1.50 \\ 1.70 \\ 2.06 \\ 2.22 \\ 2.33$	$\begin{array}{c} 0.75 \\ 0.72 \\ 0.81 \\ 0.89 \\ 0.93 \\ 1.05 \\ 1.19 \\ 1.74 \end{array}$	$\begin{array}{c} 0.0251\\ 0.0232\\ 0.0211\\ 0.0201\\ 0.0194\\ 0.0164\\ 0.0144\\ 0.0148\\ \end{array}$		$\begin{array}{c c}11000\\14100\\20900\\24300\\29200\\35700\\40800\end{array}$	$\begin{array}{c} 2.50 \\ 2.65 \\ 2.79 \\ 2.91 \\ 3.04 \\ 3.11 \\ 3.14 \\ 3.33 \end{array}$	$35 \\ 30 \\ 30 \\ 30 \\ 30 \\ 31 \\ 20 \\ 16$	$\begin{array}{r} 4.3 \\ 5.0 \\ 7.7 \\ 13.6 \\ 14.3 \\ 49.6 \\ 58.8 \\ 81.5 \end{array}$	$\begin{array}{c} 0.459 \\ 0.469 \\ 0.441 \\ 0.448 \\ 0.490 \\ 0.404 \\ 0.458 \\ 0.437 \end{array}$	$ \begin{smallmatrix} 0.421 \\ 0.429 \\ 0.424 \\ 0.466 \\ 0.418 \\ 0.520 \\ 0.483 \\ 0.473 \end{smallmatrix} $	$\begin{array}{c} 0.0242\\ 0.0272\\ 0.0301\\ 0.0328\\ 0.0358\\ 0.0373\\ 0.0381\\ 0.0429 \end{array}$	- 4 + 5 + 4 + 4 + 4 + 4 + 4 + 4 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	Medium General	44 44 44 44 44 44	("Model") Results from Runs 30, 31, and 32 dis- cause of non- uniform flow

See Plate 30.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

\$

¢

Observed Data and Computed Results²

Sand No. 5. Mean Grain Size 0.4828 mm. Uniformity Modulus 0.4384. Test No. 5-0.0010. Slope 0.0010. February 23, 1934.

72

ê U

((2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)) (15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	Water Temper- ature, Degrees Centigrade	Trt Internet	/elocit; . per S stang	Bottom	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity vgD Ft. per Sec.	ength of Run Minutes	Rate Sand Movement ⁴ Uh./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Frapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Jature of Flow	lature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\9\\0\\11\\1\\2\\13\\4\\15\\16\\6\\7\\18\\19\\20\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\3\\0\\3\\1\end{array}$		$\begin{array}{c} 0.015\\ 0.017\\ 0.018\\ 0.020\\ 0.021\\ 0.025\\ 0.023\\ 0.036\\ 0.045\\ 0.050\\ 0.057\\ 0.062\\ 0.057\\ 0.062\\ 0.098\\ 0.104\\ 0.112\\ 0.120\\ 0.121\\ 0.215\\ 0.231\\ 0.221\\ 0.231\\ 0.261\\ 0.231\\ 0.263\\ 0.337\\ 0.363\\ 0.403\end{array}$	0.035 0.039 0.042 0.046 0.051 0.058 0.067 0.083 0.076 0.132 0.143 0.116 0.132 0.278 0.227 0.241 0.208 0.227 0.241 0.208 0.278 0.334 0.604 0.604 0.733 0.679 0.834 0.604 0.673 0.604 0.793 0.679 0.834 0.604 0.604 0.604 0.604 0.604 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.497 0.534 0.604 0	$\begin{array}{c} 9.015\\ 0.017\\ 0.018\\ 0.020\\ 0.021\\ 0.024\\ 0.028\\ 0.035\\ 0.035\\ 0.043\\ 0.054\\ 0.059\\ 0.068\\ 0.077\\ 0.084\\ 0.090\\ 0.008\\ 0.0102\\ 0.109\\ 0.1181\\ 0.192\\ 0.231\\ 0.241\\ 0.221\\ 0.261\\ 0.261\\ 0.260\\ $	$\begin{array}{c} 14.5\\ 14.8\\ 15.0\\ 14.3\\ 15.0\\ 15.1\\ 15.2\\ 15.2\\ 15.2\\ 15.2\\ 15.2\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.8\\ 15.8\\ 15.9\\ 15.9\\ 16.0\\ 16.0\\ 16.0\\ 16.0\\ 16.0\\ 16.0\\ 16.1\\$	$\begin{array}{c} 0.16\\ 0.20\\ 0.23\\ 0.26\\ 0.31\\ 0.38\\ 0.41\\ 0.52\\ 0.56\\ 0.61\\ 0.52\\ 0.56\\ 0.61\\ 0.85\\ 0.76\\ 0.85\\ 0.94\\ 1.00\\ 0.85\\ 0.84\\ 0.94\\ 1.00\\ 0.84\\ 0.81\\ 0.82\\ 0.84\\ 0.81\\ 0.90\\ 0.94\\ 0.90\\$	$\begin{array}{c} 0.27\\ 0.35\\ 0.38\\ 0.41\\ 0.45\\ 0.50\\ 0.52\\ 0.52\\ 0.67\\ 0.77\\ 0.9\\ 0.91\\ 1.00\\ $	0.87 0.93 1.08 1.16 1.23 0.87 0.795 0.87 0.91	$\begin{array}{c} 0.0172\\ 0.0156\\ 0.0138\\ 0.0132\\ 0.0132\\ 0.0105\\ 0.0105\\ 0.0105\\ 0.0101\\ 0.0107\\ 0.0112\\ 0.0110\\ 0.0110\\ 0.0110\\ 0.0112\\ 0.0112\\ 0.0112\\ 0.0112\\ 0.0112\\ 0.0112\\ 0.01012\\ 0.01012\\ 0.0107\\ 0.0107\\ 0.0107\\ 0.0107\\ 0.0102\\ 0.0194\\ 0.0204\\ 0.0205\\ 0.0205\\ 0.0202\\ 0.0102\end{array}$	$\begin{array}{c} 0.002\\ 0.003\\ 0.004\\ 0.005\\ 0.006\\ 0.008\\ 0.009\\ 0.012\\ 0.022\\ 0.022\\ 0.027\\ 0.023\\ 0.041\\ 0.058\\ 0.068\\ 0.076\\ 0.096\\ 0.109\\ 0.124\\ 0.155\\ 0.194\\ 0.224\\ 0.224\\ 0.224\\ 0.2273\\ 0.273\\ 0.273\\ 0.273\\ 0.003\\ 0$	$\begin{array}{c} 200\\ 260\\ 330\\ 410\\ 520\\ 630\\ 760\\ 940\\ 1100\\ 1300\\ 1600\\ 2210\\ 2210\\ 2210\\ 2210\\ 3340\\ 4780\\ 6330\\ 6990\\ 9130\\ 6330\\ 6990\\ 9130\\ 10300\\ 13000\\ 13000\\ 13000\\ 14600\\ 12200\\ 2280\\$	$\begin{array}{c} 0.70\\ 0.74\\ 0.76\\ 0.80\\ 0.82\\ 0.84\\ 0.90\\ 0.97\\ 1.03\\ 1.08\\ 1.14\\ 1.20\\ 1.27\\ 1.35\\ 1.41\\ 1.52\\ 1.41\\ 1.52\\ 1.63\\ 1.78\\ 1.83\\ 1.90\\ 1.97\\ 2.05\\ 2.63\\ 2.73\\ 2.90\\ 3.04\\ 3.19\\ 3.30\\ 3.42\\ \end{array}$	88 88 45 40 	0.7 1.1 0.5	0.475 0.430	0.467 0.662 0.445 0.492	$\begin{array}{c} 0.0009\\ 0.0011\\ 0.0011\\ 0.0013\\ 0.0013\\ 0.0013\\ 0.0014\\ 0.0022\\ 0.0025\\ 0.0025\\ 0.0025\\ 0.0025\\ 0.0025\\ 0.0025\\ 0.0031\\ 0.0039\\ 0.0045\\ 0.0039\\ 0.00451\\ 0.0056\\ 0.0051\\ 0.0065\\ 0.0075\\ 0.0065\\ 0.0075\\ 0.0075\\ 0.0082\\ 0.0075\\ 0.0082\\ 0.0134\\ 0.0163\\ 0.0180\\ 0.0198\\ 0.0210\\ 0.0226\\ \end{array}$	Laminar Lam. & Turb. Turbulent 	None 	Smooth 	$T_{c} = 0.0080$ (Visual)
$ \begin{array}{r} 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 36 \\ \end{array} $	$\begin{array}{c} 1.009\\ 1.225\\ 1.400\\ 1.675\\ 1.817\\ 2.079\end{array}$	$\begin{array}{c} 0.403 \\ 0.446 \\ 0.484 \\ 0.522 \\ 0.550 \\ 0.559 \end{array}$	$\begin{array}{c} 0.933 \\ 1.032 \\ 1.119 \\ 1.208 \\ 1.271 \\ 1.292 \end{array}$	$\begin{array}{c} 0.299\\ 0.322\\ 0.341\\ 0.360\\ 0.373\\ 0.377\end{array}$	$\begin{array}{c} 16.1 \\ 16.2 \\ 16.2 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ \end{array}$	$\begin{array}{c} 1.08 \\ 1.19 \\ 1.25 \\ 1.39 \\ 1.43 \\ 1.61 \end{array}$	$\begin{array}{c} 1.47 \\ 1.54 \\ 1.63 \\ 1.73 \\ 1.82 \\ 2.02 \end{array}$	$\begin{array}{c} 0.99 \\ 1.10 \\ 1.03 \\ 1.28 \\ 1.40 \\ 1.46 \end{array}$	$\begin{array}{c} 0.0194\\ 0.0187\\ 0.0183\\ 0.0172\\ 0.0171\\ 0.0153\\ \end{array}$	$\begin{array}{c} 0.324 \\ 0.383 \\ 0.427 \\ 0.500 \\ 0.532 \\ 0.606 \end{array}$	$\begin{array}{r} 27100 \\ 32200 \\ 35900 \\ 41600 \\ 44400 \\ 50500 \end{array}$	$\begin{array}{r} 3.60 \\ 3.79 \\ 3.94 \\ 4.10 \\ 4.21 \\ 4.24 \end{array}$	$egin{array}{c} 60 \\ 30 \\ 25 \\ 30 \\ 30 \\ 20 \end{array}$	$2.0 \\ 3.6 \\ 5.7 \\ 11.5 \\ 13.4 \\ 30.2$	$\begin{array}{c} 0.430 \\ 0.451 \\ 0.442 \\ 0.546 \\ 0.470 \\ 0.548 \end{array}$	$\begin{array}{c} 0.467 \\ 0.488 \\ 0.520 \\ 0.461 \\ 0.474 \\ 0.339 \end{array}$	$\begin{array}{c} 0.0252 \\ 0.0278 \\ 0.0302 \\ 0.0326 \\ 0.0343 \\ 0.0349 \end{array}$	(4 11 13 14 14	24 14 14 14 24 24	15 15 11 11 41 41	("Model")

See Plate 31.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

\$

8

Observed Data and Computed Results²

Sand No. 5. Mean Grain Size 0.4828 mm. Uniformity Modulus 0.4384. Test No. 5-0.0015. Slope 0.0015. February 17, 1934.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	bischarge, Q c. f. s.	Depth, D Ft.	Area ³ ss-section, A Sq. Ft.	Hydraulic Radius, R Ft.	tter Temper- ure, Degrees Jentigrade	Ft uean	Velocit . per S eggi	ottom	anning's n	Lurbulence Criterion VR	Reynolds' Number R mensionless	ave Velocity \sqrt{gD} ^p t. per Sec.	ngth of Run Minutes	ate Sand Iovement ⁴ Lb./Ft. Vidth/Hour	ean Size of apped Sand dg, mm.	Iniformity Aodulus of apped Sand. Dimension- less	ctive Force T . per Sq. Ft.	ture of Flow	ure of Sand Iovement	ondition of Bed	Remarks
			Ŭ		Ws	~	ŝ	B	Z		Â	M	Leı	TA P	NT I	T T T	Tra Lb	Na	Nai	Ŭ	
123456789101112134156178190221	$\begin{array}{c} 0.012\\ 0.016\\ 0.018\\ 0.020\\ 0.027\\ 0.033\\ 0.044\\ 0.048\\ 0.060\\ 0.072\\ 0.093\\ 0.124\\ 0.141\\ 0.178\\ 0.218\\ 0.248\\ 0.313\\ 0.357\\ 0.416\end{array}$	$\begin{array}{c} 0.019\\ 0.020\\ 0.021\\ 0.024\\ 0.027\\ 0.031\\ 0.039\\ 0.048\\ 0.056\\ 0.062\\ 0.071\\ 0.080\\ 0.092\\ 0.101\\ 0.194\\ 0.213\\ 0.229 \end{array}$		$\begin{array}{c} 0.018\\ 0.019\\ 0.020\\ 0.021\\ 0.024\\ 0.026\\ 0.030\\ 0.036\\ 0.038\\ 0.041\\ 0.046\\ 0.053\\ 0.059\\ 0.067\\ 0.075\\ 0.085\\ 0.093\\ 0.166\\ 0.180\\ 0.191\\ \end{array}$	$\begin{array}{c} 15.0\\ 15.0\\ 15.2\\ 15.4\\ 15.6\\ 15.0\\ 15.5\\ 15.8\\ 16.0\\ 16.8\\ 15.8\\ 15.8\\ 15.8\\ 15.8\\ 15.8\\ 15.8\\ 15.8\\ 15.8\\ 15.8\\ 15.8\\ 15.4\\ 15.5\\ \end{array}$	$\begin{array}{c} 0.28\\ 0.36\\ 0.39\\ 0.40\\ 0.43\\ 0.46\\ 0.48\\ 0.51\\ 0.60\\ 0.65\\ 0.72\\ 0.86\\ 0.96\\ 1.06\\ 0.70\\ 0.73\\ 0.79\end{array}$	$\begin{array}{c} 0.48\\ 0.55\\ 0.58\\ 0.60\\ 0.61\\ 0.64\\ 0.67\\ 0.72\\ 0.75\\ 0.84\\ 0.91\\ 1.01\\ 1.11\\ 1.18\\ 1.27\\ 1.32\\ 0.95\\ 1.03\\ 1.07\\ \end{array}$	0.73 0.69 0.78	$\begin{array}{c} 0.0144\\ 0.0101\\ 0.0107\\ 0.0109\\ 0.0119\\ 0.0112\\ 0.0121\\ 0.0121\\ 0.0121\\ 0.0115\\ 0.0115\\ 0.0114\\ 0.0101\\ 0.0101\\ 0.0101\\ 0.0101\\ 0.0101\\ 0.0100\\ 0.0249\\ 0.0253\\ 0.0243\end{array}$	$\begin{array}{c} 0.005\\ 0.006\\ 0.008\\ 0.008\\ 0.009\\ 0.011\\ 0.014\\ 0.016\\ 0.020\\ 0.025\\ 0.030\\ 0.038\\ 0.051\\ 0.057\\ 0.072\\ 0.087\\ 0.099\\ 0.116\\ 0.131\\ 0.150\\ \end{array}$	$\begin{array}{c} 410\\ 500\\ 630\\ 770\\ 940\\ 1130\\ 1340\\ 1520\\ 1680\\ 2080\\ 2470\\ 3170\\ 4200\\ 7230\\ 8160\\ 9490\\ 10700\\ 12400 \end{array}$	$\begin{array}{c} 0.77\\ 0.79\\ 0.82\\ 0.82\\ 0.88\\ 0.93\\ 1.00\\ 1.09\\ 1.12\\ 1.18\\ 1.24\\ 1.34\\ 1.41\\ 1.51\\ 1.61\\ 1.72\\ 1.80\\ 2.50\\ 2.62\\ 2.71\end{array}$			0.634 0.682 0.675 0.603		$\begin{array}{c} 0.0017\\ 0.0018\\ 0.0019\\ 0.0020\\ 0.0022\\ 0.0025\\ 0.0023\\ 0.0033\\ 0.0035\\ 0.0040\\ 0.0045\\ 0.0058\\ 0.0066\\ 0.0075\\ 0.0086\\$	Laminar Lam. & Turb. Turbulent 	None Weak Medium General 	Smooth Local riffes General riffles 	${T_c=0.0075}$ (Visual)
22 23 24 25 26 27 28	$\begin{array}{c} 0.536 \\ 0.636 \\ 0.800 \\ 0.970 \\ 1.175 \\ 1.390 \\ 1.650 \end{array}$	$\begin{array}{c} 0.260 \\ 0.286 \\ 0.323 \\ 0.354 \\ 0.388 \\ 0.416 \\ 0.446 \end{array}$	$\begin{array}{c} 0.601 \\ 0.662 \\ 0.747 \\ 0.819 \\ 0.897 \\ 0.962 \\ 1.031 \end{array}$	$\begin{array}{c c} 0.212 \\ 0.230 \\ 0.253 \\ 0.271 \\ 0.290 \\ 0.306 \\ 0.322 \end{array}$	$15.5 \\ 15.5 \\ 15.5 \\ 15.5 \\ 15.5 \\ 15.6 \\ 15.8 $	$\begin{array}{c} 0.89 \\ 0.96 \\ 1.07 \\ 1.18 \\ 1.31 \\ 1.45 \\ 1.60 \end{array}$	$1.19 \\ 1.24 \\ 1.43 \\ 1.54 \\ 1.67 \\ 1.82 \\ 1.98$	$\begin{array}{c} 0.87 \\ 1.10 \\ 1.13 \\ 1.10 \\ 1.13 \\ 1.10 \\ 1.19 \\ 1.41 \end{array}$	$\begin{array}{c} 0.0229\\ 0.0225\\ 0.0215\\ 0.0204\\ 0.0192\\ 0.0181\\ 0.0169\end{array}$	$\begin{array}{c} 0.190\\ 0.221\\ 0.271\\ 0.321\\ 0.380\\ 0.442\\ 0.515\end{array}$	$\begin{array}{c} 15700 \\ 18200 \\ 22400 \\ 26500 \\ 31406 \\ 36600 \\ 42600 \end{array}$	2.89 3.04 3.22 3.38 3.53 3.66 3.79		$1.6 \\ 3.5 \\ 5.4 \\ 8.7 \\ 9.2 \\ 16.7 \\ 26.3$	$\begin{array}{c} 0.391 \\ 0.446 \\ 0.451 \\ 0.496 \\ 0.437 \\ 0.500 \\ 0.517 \end{array}$	$\begin{array}{c} 0.465\\ 0.475\\ 0.480\\ 0.438\\ 0.437\\ 0.459\\ 0.416\end{array}$	$\begin{array}{c} 0.0244\\ 0.0268\\ 0.0302\\ 0.0332\\ 0.0364\\ 0.0390\\ 0.0418 \end{array}$	14 14 14 14 14	85 48 44 45 44 44 44 44 44 44	11 11 11 11 11	("Model")

See Plate 31.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

ş.

£

 $\overline{3}$

Observed Data and Computed Results²

Sand No. 5. Mean Grain Size 0.4828 mm. Uniformity Modulus 0.4384. Test No. 5-0.0020. Slope 0.0020. March 1, 1934.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulie Radius, R Ft.	Water Temper- ature, Degrees Centigrade	Mean	Velocit . per S mtace S	Bottom	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	$\begin{array}{c} Wave \ Velocity \\ \sqrt{gD} \\ Ft. \ per \ Sec. \end{array}$	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18$	$\begin{array}{c} 0.005\\ 0.006\\ 0.007\\ 0.009\\ 0.012\\ 0.014\\ 0.021\\ 0.029\\ 0.033\\ 0.042\\ 0.055\\ 0.068\\ 0.090\\ 0.105\\ 0.128\\ 0.149\\ \end{array}$	$\begin{array}{c} 0.011\\ 0.012\\ 0.013\\ 0.014\\ 0.015\\ 0.016\\ 0.025\\ 0.025\\ 0.025\\ 0.027\\ 0.031\\ 0.038\\ 0.043\\ 0.050\\ 0.055\\ 0.061\\ 0.066\\ \end{array}$		$\begin{array}{c} 0.011\\ 0.012\\ 0.013\\ 0.014\\ 0.015\\ 0.016\\ 0.020\\ 0.023\\ 0.024\\ 0.026\\ 0.030\\ 0.030\\ 0.032\\ 0.042\\ 0.048\\ 0.052\\ 0.058\\ 0.063\\ \end{array}$	$\begin{array}{c} 14.8\\ 14.8\\ 14.8\\ 15.0\\ 15.0\\ 15.1\\ 15.2\\ 15.4\\ 15.6\\ 15.8\\ 15.8\\ 15.8\\ 15.8\\ 15.8\\ 15.8\\ 15.6\\ 15.6\\ 15.6\end{array}$	$\begin{array}{c} 0.21\\ 0.22\\ 0.24\\ 0.34\\ 0.37\\ 0.42\\ 0.44\\ 0.45\\ 0.50\\ 0.53\\ 0.58\\ 0.63\\ 0.63\\ 0.68\\ 0.68\\ 0.68\\ 0.91\\ 0.97\\ \end{array}$	$\begin{array}{c} 0.32\\ 0.36\\ 0.38\\ 0.46\\ 0.52\\ 0.59\\ 0.66\\ 0.65\\ 0.66\\ 0.68\\ 0.72\\ 0.81\\ 0.88\\ 0.96\\ 1.05\\ 1.11\\ 1.18 \end{array}$	0.95 1.03 1.13 1.28 1.35	$\begin{array}{c} 0.0155\\ 0.0147\\ 0.013\\ 0.0116\\ 0.0116\\ 0.0102\\ 0.0102\\ 0.0102\\ 0.0112\\ 0.0112\\ 0.0112\\ 0.0112\\ 0.0112\\ 0.0113\\ 0.0113\\ 0.0112\\ 0.0103\\ 0.0102\\ 0.0107\\ \end{array}$	$\begin{array}{c} 0.002\\ 0.003\\ 0.003\\ 0.004\\ 0.005\\ 0.006\\ 0.007\\ 0.009\\ 0.010\\ 0.012\\ 0.014\\ 0.017\\ 0.028\\ 0.037\\ 0.043\\ 0.053\\ 0.061\\ \end{array}$	$\begin{array}{c} 180\\ 220\\ 250\\ 310\\ 410\\ 470\\ 850\\ 1000\\ 1150\\ 1460\\ 1930\\ 2370\\ 3110\\ 3570\\ 4340\\ 5030\\ \end{array}$	$\begin{array}{c} 0.59\\ 0.62\\ 0.65\\ 0.67\\ 0.69\\ 0.72\\ 0.74\\ 0.80\\ 0.93\\ 1.00\\ 1.11\\ 1.18\\ 1.27\\ 1.33\\ 1.40\\ 1.46\end{array}$		0.1	0.584	0.336 0.437	$\begin{array}{c} 0.0014\\ 0.0015\\ 0.0016\\ 0.0018\\ 0.0019\\ 0.0020\\ 0.0021\\ 0.0025\\ 0.0029\\ 0.0034\\ 0.0039\\ 0.0047\\ 0.0062\\ 0.0062\\ 0.0066\\ 0.0062\\ 0.0068\\ 0.0074\\ 0.0062\\ 0.0068\\ 0.0076\\ 0.0082\\ 0.008$	Laminar Lam. & Turb. Turbulent 	None 	Smooth 	$T_{c} = 0.0085$
$19 \\ 20 \\ 21$	$\begin{array}{c} 0.172 \\ 0.212 \\ 0.345 \end{array}$	$\begin{array}{c} 0.074 \\ 0.146 \\ 0.189 \end{array}$	$\begin{array}{c} 0.171 \\ 0.337 \\ 0.436 \end{array}$	$\begin{array}{c} 0.070 \\ 0.129 \\ 0.162 \end{array}$	$\begin{array}{c c} 15.8 \\ 15.8 \\ 16.0 \end{array}$	$\begin{array}{c} 1.01 \\ 0.63 \\ 0.79 \end{array}$	$1.24 \\ 0.86 \\ 1.11$	$1.45 \\ 0.72 \\ 0.85$	$\begin{array}{c} 0.0111 \\ 0.0267 \\ 0.0248 \end{array}$	$\begin{array}{c} 0.070 \\ 0.081 \\ 0.128 \end{array}$	$5820 \\ 6760 \\ 10700$	$1.55 \\ 2.17 \\ 2.47$	60 - 58	1.0 	0.747 0.430	0.482	$\begin{array}{c} 0.0092 \\ 0.0182 \\ 0.0236 \end{array}$	4.5 1.5 4.6	General	General riffles	(Visual) ($T_e = 0.0248$
$22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28$	$\begin{array}{c} 0.452 \\ 0.545 \\ 0.680 \\ 0.820 \\ 0.990 \\ 1.189 \\ 1.410 \end{array}$	$\begin{array}{c} 0.222\\ 0.250\\ 0.271\\ 0.296\\ 0.324\\ 0.354\\ 0.374 \end{array}$	$\begin{array}{c} 0.514 \\ 0.577 \\ 0.626 \\ 0.684 \\ 0.748 \\ 0.818 \\ 0.864 \end{array}$	$\begin{array}{c} 0.187\\ 0.205\\ 0.220\\ 0.235\\ 0.252\\ 0.252\\ 0.271\\ 0.282\end{array}$	$\begin{array}{c} 16.0 \\ 16.1 \\ 16.2 \\ 16.3 \\ 16.4 \\ 16.5 \\ 16.6 \end{array}$	$\begin{array}{c} 0.88 \\ 0.95 \\ 1.09 \\ 1.20 \\ 1.32 \\ 1.45 \\ 1.63 \end{array}$	$\begin{array}{c} 1.23 \\ 1.29 \\ 1.47 \\ 1.59 \\ 1.80 \\ 1.94 \\ 2.00 \end{array}$	$1.05 \\ 1.28 \\ 1.06 \\ 1.46 \\ 1.51 \\ 1.51$	$\begin{array}{c} 0.0246\\ 0.0243\\ 0.0221\\ 0.0210\\ 0.0198\\ 0.0190\\ 0.0174 \end{array}$	$\begin{array}{c} 0.165 \\ 0.194 \\ 0.239 \\ 0.282 \\ 0.333 \\ 0.394 \\ 0.460 \end{array}$	$\begin{array}{c} 13700 \\ 16300 \\ 20100 \\ 23700 \\ 28200 \\ 33400 \\ 39000 \end{array}$	$2.68 \\ 2.84 \\ 2.96 \\ 3.09 \\ 3.23 \\ 3.38 \\ 3.47$	66 30 36 30 30 30 20	$2.3 \\ 3.8 \\ 8.4 \\ 10.4 \\ 15.3 \\ 27.4 \\ 32.6$	$\begin{array}{c} 0.478 \\ 0.477 \\ 0.515 \\ 0.509 \\ 0.458 \\ 0.500 \\ 0.514 \end{array}$	$\begin{array}{c} 0.447\\ 0.441\\ 0.426\\ 0.422\\ 0.439\\ 0.449\\ 0.411\end{array}$	$\begin{array}{c} 0.0278\\ 0.0312\\ 0.0338\\ 0.0370\\ 0.0404\\ 0.0442\\ 0.0467\end{array}$	14 43 44 44 44 44	4 • • • • • • • • • • • • • • • • • • •	61 65 61 61 61 61	("Model")

See Plate 32.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

n i

TABLE 26 1

OBSERVED DATA AND COMPUTED RESULTS²

Sand No. 6. Mean Grain Size 0.3470 mm. Uniformity Modulus 0.6428. Test No. 6-0.0010. Slope 0.0010. April 7-10, 1933.

*

6

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	⁵ Water Temper- ature, Degrees Centigrade	Wean Wean	velocit per S antace Surface	Bottom	Manning's n	Turbulence Criterion VR	Reynolds' Number R Dimensionless	$\begin{array}{l} \mbox{Wave Velocity} \\ \mbox{\sqrt{gD}} \\ \mbox{Ft. per Sec.} \end{array}$	Length of Run Minutes	Rate Sand Movement 4 Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 17 \\ 10 \\ 11 \\ 1$	$\begin{array}{c} 0.019\\ 0.033\\ 0.203\\ 0.203\\ 0.314\\ 0.407\\ 0.564\\ 0.653\\ 0.738\\ 0.837\\ 0.937\\ 1.046\\ 1.125\\ 1.217\\ 1.310\\ 1.371\\ 1.481\\ 1.565\\ \end{array}$	$\begin{array}{c} 0.020\\ 0.066\\ 0.091\\ 0.148\\ 0.233\\ 0.245\\ 0.328\\ 0.328\\ 0.354\\ 0.376\\ 0.376\\ 0.376\\ 0.408\\ 0.430\\ 0.444\\ 0.472\\ 0.491\\ 0.525\end{array}$	$\begin{array}{c} 0.048\\ 0.160\\ 0.219\\ 0.358\\ 0.563\\ 0.594\\ 0.679\\ 0.747\\ 0.793\\ 0.854\\ 0.908\\ 0.944\\ 0.986\\ 1.038\\ 1.072\\ 1.140\\ 1.185\\ 1.75\\ 1.140\\ 0.185\\ 0.908\\ 0.9$	$\begin{array}{c} 0.019\\ 0.062\\ 0.085\\ 0.132\\ 0.204\\ 0.226\\ 0.274\\ 0.286\\ 0.274\\ 0.286\\ 0.295\\ 0.304\\ 0.317\\ 0.325\\ 0.339\\ 0.350\\ 0.266\end{array}$	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	$\begin{array}{c} 0.40\\ 0.21\\ 0.93\\ 0.88\\ 0.72\\ 0.85\\ 0.83\\ 0.93\\ 0.98\\ 1.03\\ 1.11\\ 1.14\\ 1.17\\ 1.22\\ 1.20\\ 1.25\\$	No Observations	No Observations	$\begin{array}{c} 0.0086\\ 0.0356\\ 0.0098\\ 0.0138\\ 0.0219\\ 0.0219\\ 0.0201\\ 0.0205\\ 0.0203\\ 0.0198\\ 0.0188\\ 0.0186\\ 0.0186\\ 0.0182\\ 0.0198\\ 0.0187\\ 0.0198\\ \end{array}$	$\begin{array}{c} 0.008\\ 0.013\\ 0.079\\ 0.116\\ 0.142\\ 0.173\\ 0.240\\ 0.215\\ 0.240\\ 0.267\\ 0.327\\ 0.372\\ 0.372\\ 0.372\\ 0.396\\ 0.408\\ 0.438\\ 0.438\\ 0.458\\ \end{array}$	660 1120 6900 12500 15200 16600 23400 23400 23400 28700 30500 32700 34800 35900 35900	$\begin{array}{c} 0.80\\ 1.46\\ 1.71\\ 2.18\\ 2.78\\ 3.00\\ 3.14\\ 3.24\\ 3.37\\ 3.47\\ 3.54\\ 3.62\\ 3.71\\ 3.62\\ 3.71\\ 3.79\\ 3.89\\ 3.96\\ 4.09\end{array}$	60 60 63 36 44 30 30 30 30 30 30 30 30 30 30	$\begin{array}{c} 0.3\\ 0.6\\ 0.2\\ 0.6\\ 0.9\\ 0.5\\ 0.8\\ 1.5\\ 1.6\\ 2.1\\ 2.6\\ 3.8\\ 3.7\\ 3.4 \end{array}$	Trapped Sand Not Analyzed	Trapped Sand Not Analyzed	$\begin{array}{c} 0.0012\\ 0.0041\\ 0.0057\\ 0.0092\\ 0.0145\\ 0.0153\\ 0.0175\\ 0.0205\\ 0.0221\\ 0.0225\\ 0.0225\\ 0.0268\\ 0.0275\\ 0.0295\\ 0.0328\\$	No Observations	None Weak 	Smooth Local riffles General riffles 	$\begin{cases} T_c = 0.0060 \\ (Visual) \end{cases}$ $\begin{cases} T_c = 0.0236 \\ (''Model'') \end{cases}$

See Plate 32.
 All values in English units except grain size in millimeters.
 Width of flume 2.416 ft.
 Dry weight.
 Estimated from weather bureau records.

OBSERVED DATA AND COMPUTED RESULTS²

Sand No. 6. Mean Grain Size 0.3470 mm. Uniformity Modulus 0.6428. Test No. 6-0.0015. Slope 0.0015. April 26-29, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	${ m Depth,\ D}{ m Ft.}$	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	⁵ Water Temper- ature, Degrees Centigrade	Wean Mean	/elocit . per s	y Sec.	Manning's n	Turbulence Criterion VR	Reynolds' Number R	$\frac{Wave Velocity}{\sqrt{gD}}$ Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand, dg, mm.	Uniformity Modulus of Trapped Sand, M. Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\9\\20\\22\\22\end{array}$	$\begin{array}{c} 0.012\\ 0.046\\ 0.057\\ 0.157\\ 0.230\\ 0.354\\ 0.420\\ 0.467\\ 0.565\\ 0.673\\ 0.803\\ 0.940\\ 1.070\\ 1.180\\ 1.263\\ 1.348\\ 1.400\\ 1.545\\ \end{array}$	$\begin{array}{c} 0.013\\ 0.029\\ 0.049\\ 0.061\\ 0.105\\ 0.131\\ 0.188\\ 0.204\\ 0.2259\\ 0.233\\ 0.259\\ 0.286\\ 0.311\\ 0.336\\ 0.365\\ 0.376\\ 0.376\\ 0.399\\ 0.413\\ 0.426\\ 0.446\\ 0.466\\ \end{array}$	$\begin{array}{c} 0.032\\ 0.070\\ 0.119\\ 0.148\\ 0.254\\ 0.317\\ 0.454\\ 0.563\\ 0.626\\ 0.691\\ 0.752\\ 0.812\\ 0.908\\ 0.908\\ 0.908\\ 1.030\\ 1.070\\ 1.122\\ \end{array}$	$\begin{array}{c} 0.013\\ 0.028\\ 0.047\\ 0.058\\ 0.096\\ 0.118\\ 0.163\\ 0.175\\ 0.190\\ 0.214\\ 0.232\\ 0.247\\ 0.263\\ 0.286\\ 0.286\\ 0.307\\ 0.315\\ 0.336\\ 0.336\\ 0.336\\ \end{array}$	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	$\begin{array}{c} 0.38\\ 0.66\\ 0.81\\ 1.06\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 1.72\\ 1.33\\ 1.36\\ 1.31\\ 1.35\\ 1.36\\ 1.39\\ 1.47\\ \end{array}$	No Observations	No Observations	$\begin{array}{c} 0.0083\\ 0.0081\\ 0.0092\\ 0.0081\\ 0.0081\\ 0.0092\\ 0.0081\\ 0.0238\\ 0.0251\\ 0.0223\\ 0.0223\\ 0.0222\\ 0.0222\\ 0.0222\\ 0.0202\\ 0.0212\\ 0.0203\\ 0.0192\\ 0.0197\\ 0.0196\\ 0.00196\\ 0.00196\\ 0.0008\\ 0.000$	$\begin{array}{c} 0.005\\ 0.018\\ 0.038\\ 0.062\\ 0.059\\ 0.126\\ 0.147\\ 0.162\\ 0.147\\ 0.162\\ 0.226\\ 0.264\\ 0.304\\ 0.372\\ 0.393\\ 0.414\\ 0.428\\ 0.455\\ 0.495\\ 0.495\end{array}$	$\begin{array}{c} 450\\ 1710\\ 3530\\ 5710\\ 10900\\ 11700\\ 13600\\ 17900\\ 20900\\ 24400\\ 28200\\ 31500\\ 34500\\ 36400\\ 38400\\ 38400\\ 39700\\ 42200\\ 45600 \end{array}$	$\begin{array}{c} 0.65\\ 0.97\\ 1.25\\ 1.40\\ 1.87\\ 2.05\\ 2.46\\ 2.56\\ 2.69\\ 2.74\\ 2.88\\ 3.06\\ 3.28\\ 3.16\\ 3.28\\ 3.42\\ 3.42\\ 3.42\\ 3.68\\ 3.42\\ 3.68\\ 3.68\\ 3.68\\ 3.68\\ 3.87\\ \end{array}$	$ \begin{array}{c} 59\\ 47\\ 75\\ 51\\ 65\\ 40\\ 44\\ 27\\ 34\\ 52\\ 27\\ 34\\ 38\\ 40\\ \end{array} $	$\begin{array}{c} 0.2\\ 0.2\\ 0.1\\ 0.5\\ 0.5\\ 1.5\\ 2.1\\ 2.8\\ 3.4\\ 6.8\\ 6.3\\ 8.5\\ 9.1\\ 6.9\\ 10.8\\ \end{array}$	Trapped Sand Not Analyzed	Trapped Sand Not Analyzed	$\begin{array}{c} 0.0012\\ 0.0027\\ 0.0046\\ 0.0057\\ 0.0098\\ 0.0123\\ 0.0176\\ 0.0191\\ 0.0211\\ 0.0218\\ 0.0242\\ 0.0268\\ 0.0291\\ 0.0314\\ 0.0352\\ 0.0373\\ 0.0386\\ 0.0399\\ 0.0417\\ 0.0417\\ 0.0417\\ \end{array}$	No Observations	None Weak Medium Weak None Weak Medium General 	Smooth Local riffles General riffles 	Run 2 dis- carded $\{T_c=0.0060 \\ (Visual)$ $\{T_c=0.0252 \\ (''Model'')$

See Plate 33.
 All values in English units except grain size in millimeters.
 Width of flume 2.416 ft.
 Dry weight.
 Estimated from weather bureau records.

2 T

4 A

×

ė

Observed Data and Computed Results²

Sand No. 6. Mean Grain Size 0.3470 mm. Uniformity Modulus 0.6428. Test No. 6-0.0020. Slope 0.0020. May 7-10, 1933.

(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft	Hydraulic Radius, R Ft.	⁵ Water Temper- ature, Degrees Centigrade	V Ft Wean	elocit per 8 or sourta sourta	Bottom	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	$\begin{array}{c} Wave Velocity\\ \sqrt{gD}\\ Ft. per Sec. \end{array}$	Length of Run Minutes	Rate Sand Movement ⁴ I.b./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\2\\2\\4\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-$	$ \begin{array}{c} 0.019\\ 0.021\\ 0.059\\ 0.154\\ 0.210\\ 0.210\\ 0.210\\ 0.210\\ 0.210\\ 0.210\\ 0.576\\ 0.278\\ 0.338\\ 0.0420\\ 0.576\\ 0.061\\ 0.576\\ 0.061\\ 0.576\\ 0.061\\ 0.576\\ 0.1115\\ 0.742\\ 0.1115\\ 0.742\\ 0.1115\\ 0.11$	$\begin{array}{c} 0.020\\ 0.022\\ 0.036\\ 0.048\\ 0.090\\ 0.120\\ 0.149\\ 0.254\\ 0.267\\ 0.279\\ 0.303\\ 0.31\\ 0.343\\ 0.357\\ 0.367\\ 0.373\\ 0.373\\ 0.387\end{array}$	$ \begin{array}{c} 0.048\\ 0.052\\ 0.087\\ 0.116\\ 0.218\\ 0.291\\ 0.423\\ 0.500\\ 0.577\\ 0.613\\ 0.645\\ 0.675\\ 0.733\\ 0.645\\ 0.801\\ 0.829\\ 0.801\\ 0.829\\ 0.863\\ 0.887\\ 0.901\\ 0.930\\ \end{array} $	$ \begin{array}{c} 0.020\\ 0.021\\ 0.035\\ 0.046\\ 0.084\\ 0.109\\ 0.133\\ 0.153\\ 0.153\\ 0.210\\ 0.210\\ 0.227\\ 0.243\\ 0.252\\ 0.266\\ 0.281\\ 0.285\\ 0.295\\ 0$	$\begin{array}{c} 23.0\\$	$\begin{array}{c} 0.40\\ 0.40\\ 0.68\\ 0.87\\ 0.71\\ 0.72\\ 0.77\\ 0.80\\ 0.84\\ 0.88\\ 0.94\\ 1.02\\ 1.10\\ 1.21\\ 1.25\\ 1.35\\ 1.42\\ 1.48\\ 1.51\\ 1.56\end{array}$	No Observations	No Observations	$\begin{array}{c} 0.0125\\ 0.0127\\ 0.0105\\ 0.0098\\ 0.0180\\ 0.0210\\ 0.0224\\ 0.0238\\ 0.0250\\ 0.0225\\ 0.0225\\ 0.0225\\ 0.0225\\ 0.0226\\ 0.0219\\ 0.0216\\ 0.0219\\ 0.0216\\ 0.0219\\ 0.0216\\ 0.0193\\ 0.0193\\ 0.0190\\ 0.0187\end{array}$		$\begin{array}{c} 790\\ 850\\ 2370\\ 4000\\ 5930\\ 7220\\ 10300\\ 12200\\ 14900\\ 22500\\ 24900\\ 22500\\ 24900\\ 22500\\ 30400\\ 30200\\ 41500\\ 43200\\ 43200\\ \end{array}$	$\begin{array}{c} 0.80\\ 0.84\\ 1.08\\ 1.24\\ 1.70\\ 2.19\\ 2.37\\ 2.58\\ 2.93\\ 2.93\\ 2.93\\ 3.26\\ 3.26\\ 3.26\\ 3.32\\ 3.43\\ 3.43\\ 3.52\\ \end{array}$	75 30 39 36 34 33 30 30 30 30 30 30 30 30 30 30 30 30	$\begin{array}{c} & & & \\ & & & \\ & &$	Trapped Sand Not Analyzed	Trapped Sand Not Analyzed	$\begin{array}{c} 0.0025\\ 0.0027\\ 0.0045\\ 0.0060\\ 0.0150\\ 0.0150\\ 0.0150\\ 0.0218\\ 0.0228\\ 0.0218\\ 0.0238\\ 0.0378\\ 0.0333\\ 0.0348\\ 0.0378\\ 0.0373\\ 0.0445\\ 0.0445\\ 0.0465\\ 0.0465\\ 0.0465\\ 0.0485\\ \end{array}$	No Observations	None Weak None Medium General 	Smooth Local riffles General riffles 	$\begin{cases} T_c = 0.0060 \\ (Visual) \end{cases}$ $\begin{cases} T_c = 0.0223 \\ ("Model") \end{cases}$

See Plate 33,
 All values in English units except grain size in millimeters.
 Width of flume 2.416 ft.
 Dry weight.
 Estimated from weather bureau records.

Ŧ

.

TABLE 29.1

Observed Data and Computed Results²

Sand No. 7. Mean Grain Size 0.3104 mm. Uniformity Modulus 0.5246. Test No. 7-0.0010. Slope 0.0010. July 7-14, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulie Radius, R Ft.	⁵ Water Temper- ature, Degrees Centigrade	Ft. Wean	Velocit . per 8	Bottom a	Manning's n	Turbulence Criterion VR	Reynolds' Number R Dimensionless	$\frac{Wave Velocity}{\sqrt{gD}}$ Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\end{array}$	$\begin{array}{c} 0.003\\ 0.020\\ 0.043\\ 0.062\\ 0.094\\ 0.134\\ 0.169\\ 0.206\\ 0.255\\ 0.252\\ 0.284\\ 0.286\\ 0.323\\ 0.400\\ 0.473\\ 0.590\\ 0.675\\ 0.755\\ 0.852\\ 0.947\\ \end{array}$	$\begin{array}{c} 0.012\\ 0.021\\ 0.034\\ 0.058\\ 0.073\\ 0.084\\ 0.095\\ 0.108\\ 0.111\\ 0.120\\ 0.224\\ 0.239\\ 0.248\\ 0.282\\ 0.305\\ 0.334\\ 0.356\\ 0.376\\ 0.397\\ \end{array}$	$\begin{array}{c} 0.029\\ 0.051\\ 0.082\\ 0.107\\ 0.141\\ 0.204\\ 0.230\\ 0.269\\ 0.293\\ 0.493\\ 0.539\\ 0.493\\ 0.577\\ 0.599\\ 0.681\\ 0.578\\ 0.808\\ 0.808\\ 0.808\\ 0.908\\ 0.959\end{array}$	$\left \begin{array}{c} 0.012\\ 0.021\\ 0.033\\ 0.042\\ 0.055\\ 0.069\\ 0.079\\ 0.088\\ 0.099\\ 0.101\\ 0.110\\ 0.165\\ 0.175\\ 0.188\\ 0.199\\ 0.206\\ 0.229\\ 0.244\\ 0.262\\ 0.275\\ 0.287\\ 0.299\end{array}\right.$	$\begin{array}{c} 27.0\\$	$\begin{array}{c} 0.10\\ 0.39\\ 0.52\\ 0.58\\ 0.76\\ 0.83\\ 0.90\\ 0.90\\ 0.94\\ 0.97\\ 0.62\\ 0.66\\ 0.67\\ 0.69\\ 0.70\\ 0.69\\ 0.83\\ 0.88\\ 0.88\\ 0.94\\ 0.99\\ \end{array}$	No Observations	No Observations	$\begin{array}{c} 0.0228\\ 0.0092\\ 0.0092\\ 0.0098\\ 0.0102\\ 0.0104\\ 0.0105\\ 0.0104\\ 0.0113\\ 0.0103\\ 0.0111\\ 0.0225\\ 0.0229\\ 0.0231\\ 0.0226\\ 0.0231\\ 0.0223\\ 0.0223\\ 0.0223\\ 0.0223\\ 0.0223\\ 0.0223\\ 0.0223\\ 0.0223\\ 0.0221\\ 0.0221\\ 0.0218\\ 0.0212\\ 0.0212\\ 0.0212\\ 0.0212\\ 0.0012\\$	$\begin{array}{c} 0.001\\ 0.008\\ 0.017\\ 0.024\\ 0.037\\ 0.052\\ 0.0652\\ 0.079\\ 0.089\\ 0.095\\ 0.103\\ 0.115\\ 0.127\\ 0.138\\ 0.143\\ 0.159\\ 0.195\\ 0.218\\ 0.242\\ 0.226\\ \end{array}$	$\begin{array}{c} 130\\ 900\\ 1880\\ 2640\\ 3990\\ 5680\\ 7100\\ 8570\\ 9690\\ 10300\\ 11600\\ 12500\\ 12500\\ 12500\\ 12500\\ 12500\\ 12500\\ 23700\\ 23700\\ 23700\\ 23700\\ 232100\\ \end{array}$	$\begin{array}{c} 0.62\\ 0.82\\ 1.05\\ 1.19\\ 1.37\\ 1.53\\ 1.64\\ 1.75\\ 1.86\\ 1.89\\ 1.97\\ 2.476\\ 2.67\\ 2.67\\ 2.67\\ 2.67\\ 2.82\\ 3.00\\ 3.12\\ 3.27\\ 3.38\\ 3.47\\ 3.57\end{array}$	60 18 83 85 85 75 75 65 30 32 31 28	0.1 0.0 0.1 0.2 0.3 0.2 0.5 0.8 0.8 0.8 0.8 0.8 0.8	0.396 0.391 0.321 0.328 0.325 0.314	0.617 0.598 0.551 0.549 0.565 0.606	$\begin{array}{c} 0.0008\\ 0.0013\\ 0.0021\\ 0.0028\\ 0.0036\\ 0.0059\\ 0.0059\\ 0.0069\\ 0.0069\\ 0.0076\\ 0.0119\\ 0.0128\\ 0.0139\\ 0.0145\\ 0.0176\\ 0.0176\\ 0.0176\\ 0.019\\ 0.0125\\ 0.0176\\ 0.019\\ 0.0228\\ 0.0248\\ \end{array}$	Laminar Lam. & Turb. Turbulent 	None Weak Medium 	Smooth Local riffles General riffles 	$T_c = 0.0070$ (Visual) $T_c = 0.0228$ (''Model'')

See Plate 34.
 All values in English units except grain size in millimeters.
 Width of flume 2.416 ft.
 Dry weight.
 Estimated from weather bureau records.

5 a

<u>5</u>

Observed Data and Computed Results²

Sand No. 7. Mean Grain Size 0.3104 mm. Uniformity Modulus 0.5246. Test No. 7-0.0015. Slope 0.0015. July 14, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Foot	⁵ WaterTemper- ature, Degrees Centigrade	V Ft Wean	elocit per S surface S	Bottom	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	$\begin{array}{l} Wave \ Velocity \\ \sqrt{gD} \\ Ft, \ per \ Sec. \end{array}$	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\1\\2\\3\\1\\4\\1\\5\\6\\1\\7\\1\\8\\9\\2\\0\\2\\1\\2\\2\\3\\3\\2\\3\\2\\3\\2\\3\\3\\2\\3\\3\\3\\1\\1\\1\\2\\2\\3\\3\\3\\3$	$\begin{array}{c} 0.004\\ 0.008\\ 0.013\\ 0.026\\ 0.020\\ 0.025\\ 0.027\\ 0.037\\ 0.037\\ 0.081\\ 0.099\\ 0.081\\ 0.130\\ 0.113\\ 0.130\\ 0.130\\ 0.131\\ 0.189\\ 0.263\\ 0.376\\ 0.505\\ 0.625\\ 0.625\\ 0.743\\ 0.897\\ 1.024 \end{array}$	$\begin{array}{c} 0.009\\ 0.012\\ 0.015\\ 0.017\\ 0.020\\ 0.021\\ 0.022\\ 0.023\\ 0.027\\ 0.036\\ 0.043\\ 0.058\\ 0.058\\ 0.110\\ 0.165\\ 0.208\\ 0.241\\ 0.288\\ 0.241\\ 0.283\\ 0.300\\ 0.340\\ 0.368\\ 0.340\\ 0.368\\ 0.$	$\begin{array}{c} 0.022\\ 0.029\\ 0.036\\ 0.041\\ 0.048\\ 0.051\\ 0.056\\ 0.065\\ 0.087\\ 0.104\\ 0.121\\ 0.130\\ 0.140\\ 0.266\\ 0.339\\ 0.502\\ 0.581\\ 0.683\\ 0.725\\ 0.822\\ 0.890 \end{array}$		27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	$\begin{array}{c} 0.18\\ 0.28\\ 0.36\\ 0.39\\ 0.42\\ 0.47\\ 0.47\\ 0.48\\ 0.57\\ 0.68\\ 0.78\\ 0.82\\ 0.87\\ 0.93\\ 0.56\\ 0.66\\ 0.75\\ 0.87\\ 0.92\\ 1.02\\ 1.02\\ 1.02\\ 1.15\\ \end{array}$	No Observations	No Observations	$\begin{array}{c} 0.0133\\ 0.0106\\ 0.0096\\ 0.0097\\ 0.0102\\ 0.0096\\ 0.0093\\ 0.0091\\ 0.0089\\ 0.0091\\ 0.0089\\ 0.0091\\ 0.0093\\ 0.0091\\ 0.0093\\ 0.0091\\ 0.0252\\ 0.0257\\ 0.0243\\ 0.0227\\ 0.0243\\ 0.0227\\ 0.0235\\ 0.0218\\$	$\begin{array}{c} 0.002\\ 0.003\\ 0.005\\ 0.007\\ 0.008\\ 0.010\\ 0.011\\ 0.015\\ 0.024\\ 0.033\\ 0.039\\ 0.044\\ 0.051\\ 0.050\\ 0.070\\ 0.096\\ 0.134\\ 0.175\\ 0.210\\ 0.247\\ 0.291\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.210\\ 0.325\\ 0.$	$\begin{array}{c} 180\\ 360\\ 590\\ 720\\ 910\\ 1080\\ 1210\\ 1210\\ 1210\\ 1210\\ 2590\\ 3550\\ 4270\\ 4830\\ 5540\\ 7620\\ 10400\\ 7620\\ 10400\\ 19000\\ 22800\\ 22800\\ 22800\\ 26800\\ 31600\\ 31600\\ 31600\\ 35300\\ \end{array}$	$\begin{array}{c} 0.47\\ 0.62\\ 0.69\\ 0.74\\ 0.80\\ 0.82\\ 0.84\\ 0.86\\ 0.93\\ 1.07\\ 1.27\\ 1.32\\ 1.36\\ 1.88\\ 2.12\\ 2.30\\ 2.58\\ 2.78\\ 3.01\\ 3.10\\ 3.30\\ \end{array}$	86 50 56 90 65 33 30 30 32 30	0.0 0.1 0.3 0.8 1.0 2.1 2.9 3.2 3.2 4.1	0.455 0.479 0.357 0.318	0.462 0.523 0.548 0.604	$\left \begin{array}{c} 0.0008\\ 0.0011\\ 0.0014\\ 0.0016\\ 0.0020\\ 0.0025\\ 0.0025\\ 0.0025\\ 0.0034\\ 0.0040\\ 0.00451\\ 0.0051\\ 0.0051\\ 0.0051\\ 0.0054\\ 0.01054\\ 0.01054\\ 0.01054\\ 0.01265\\ 0.0280\\ 0.0280\\ 0.0280\\ 0.0280\\ 0.0281\\ 0.0081\\ $	Laminar Lam. & Turb. Turbulent 	None 	Smooth Local riffles General riffles 	$\{ \substack{T_c=0.0058\\(Visual)} \\ \{ \substack{T_c=0.0227\\(''Model'')} \end{cases}$

See Plate 34.
 All values in English units except grain size in millimeters.
 Width of flume 2.416 ft.
 Dry weight.
 Estimated from weather bureau records.

e

ē.

79

8

b:

Observed Data and Computed Results²

Sand No. 7. Mean Grain Size 0.3104 mm. Uniformity Modulus 0.5246. Test No. 7-0.0020. Slope 0.0020. July 26, 1933.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(2M	(91)	(99)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulie Radius, R Ft.	⁵ Water Temper- ature, Degrees Centigrade	Ft Utan	Velocit . per 8	Bottom a	Manning's n	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity vgD Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M. Dimension-	Fractive Force T Lb. per Sq. Ft	Vature of Flow	Vature of Sand Movement	Condition of Bed	Remarks
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\21\end{array}$	$\begin{array}{c} 0.012\\ 0.013\\ 0.014\\ 0.015\\ 0.016\\ 0.017\\ 0.020\\ 0.022\\ 0.024\\ 0.030\\ 0.063\\ 0.098\\ 0.134\\ 0.186\\ 0.232\\ 0.285\\ 0.330\\ 0.442\\ 0.558\\ 0.676\\ \end{array}$	$\begin{array}{c} 0.013\\ 0.014\\ 0.015\\ 0.015\\ 0.016\\ 0.022\\ 0.022\\ 0.022\\ 0.038\\ 0.049\\ 0.061\\ 0.075\\ 0.123\\ 0.149\\ 0.170\\ 0.189\\ 0.216\\ 0.243\\ 0.380\\ 0.216\\ 0.243\\ 0.380\\ 0.80\\ 0$	$\begin{array}{c} 0.031\\ 0.034\\ 0.036\\ 0.036\\ 0.039\\ 0.048\\ 0.053\\ 0.060\\ 0.092\\ 0.118\\ 0.147\\ 0.181\\ 0.298\\ 0.360\\ 0.411\\ 0.457\\ 0.524\\ 0.524\\ 0.526\\ 0.675\end{array}$		27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	$\begin{array}{c} 0.39\\ 0.38\\ 0.41\\ 0.42\\ 0.45\\ 0.46\\ 0.46\\ 0.45\\ 0.50\\ 0.69\\ 0.83\\ 0.91\\ 1.03\\ 0.63\\ 0.63\\ 0.69\\ 0.72\\ 0.84\\ 0.92\\ 0.84\\ 0.90\\ \end{array}$	No Observations	No Observations		$\begin{array}{c} 0.005\\ 0.005\\ 0.006\\ 0.006\\ 0.007\\ 0.007\\ 0.008\\ 0.012\\ 0.012\\ 0.025\\ 0.039\\ 0.053\\ 0.073\\ 0.069\\ 0.086\\ 0.103\\ 0.119\\ 0.155\\ 0.193\\ 0.25\end{array}$	$\begin{array}{c} 550\\ 580\\ 680\\ 730\\ 760\\ 890\\ 1000\\ 1000\\ 1310\\ 2750\\ 4240\\ 5750\\ 7920\\ 7530\\ 9310\\ 11200\\ 11200\\ 12900\\ 16800\\ 20900\\ 20900\\ 20900\\ 20900\\ \end{array}$	$\begin{array}{c} 0.65\\ 0.67\\ 0.70\\ 0.70\\ 0.72\\ 0.76\\ 0.80\\ 0.80\\ 0.80\\ 1.11\\ 1.26\\ 1.40\\ 1.55\\ 1.99\\ 2.19\\ 2.34\\ 2.47\\ 2.64\\ 2.80\\ \end{array}$	42 8 10 38 53 25 40 38 34	0.0 0.8 0.8 0.1 0.2 0.6 0.3 2.0 3.2	0.509	0.571 0.517 0.562 0.555	$\begin{array}{c} 0.0016\\ 0.0017\\ 0.0017\\ 0.0019\\ 0.0020\\ 0.0025\\ 0.0025\\ 0.0027\\ 0.0031\\ 0.0047\\ 0.0061\\ 0.0076\\ 0.0094\\ 0.0154\\ 0.0154\\ 0.0154\\ 0.0122\\ 0.0236\\ 0.0223\\ 0.0236\\ 0.0270\\ 0.0304\\ \end{array}$	Laminar Lam. & Turb. Turbulent 	None 	Smooth Local riffles General riffles 	${T_c=0.0070} {T_c=0.0246} {T_c=0.0246} {(''Model'')}$
$\begin{array}{c} 22\\23\\24\end{array}$	$\begin{array}{c} 0.818 \\ 0.953 \\ 1.146 \end{array}$	$\begin{array}{r} 0.295 \\ 0.309 \\ 0.346 \end{array}$	$\begin{array}{c} 0.075 \\ 0.712 \\ 0.746 \\ 0.836 \end{array}$	$\begin{array}{r} 0.228 \\ 0.238 \\ 0.248 \\ 0.270 \end{array}$	$\begin{array}{c c} 27.0 \\ 27.0 \\ 27.0 \\ 27.0 \end{array}$	$\begin{array}{c} 1.00 \\ 1.15 \\ 1.28 \\ 1.36 \end{array}$			$\begin{array}{c} 0.0248 \\ 0.0222 \\ 0.0207 \\ 0.0205 \end{array}$	$\begin{array}{c} 0.228 \\ 0.274 \\ 0.317 \\ 0.368 \end{array}$	$24800 \\ 29700 \\ 34400 \\ 40000$	$\begin{array}{c} 3.00 \\ 3.08 \\ 3.15 \\ 3.34 \end{array}$	$25 \\ 24 \\ 17 \\ 15$	$5.4 \\ 6.5 \\ 14.1 \\ 20.7$	0.331	0.556	$\begin{array}{c} 0.0350 \\ 0.0368 \\ 0.0386 \\ 0.0432 \end{array}$	4 6 4 4 4 4 6 4	24 24 24 24	6 6 6 4 6 4 6 4 6 4	

See Plate 35.
 All values in English units except grain size in millimeters.
 Width of flume 2.416 ft.
 Dry weight.
 Estimated from weather bureau records.

. ў я

é é

TABLE 32 1

Observed Data and Computed Results²

Sand No. 8, Mean Grain Size 0.2053 mm. Uniformity Modulus 0.5597. Test No. 8-0.0010. Slope 0.0010. March 20, 1934.

, 4

ę

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15a)	(15b)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	Water Temper- ature, Degrees Centigrade	Wean Wean	velocit; per S salace S ntace	Bottom a	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity vgD Ft. per Sec.	Length of Run Minutes	Rate Mover Lb., Width/	Sand nent 4 /Ft Hour sns d	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
	$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\112\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\end{array}$	$\begin{array}{c} 0.005\\ 0.007\\ 0.008\\ 0.010\\ 0.014\\ 0.029\\ 0.040\\ 0.051\\ 0.064\\ 0.095\\ 0.148\\ 0.095\\ 0.148\\ 0.140\\ 0.165\\ 0.250\\ 0.305\\ 0.362\\ 0.305\\ 0.362\\ 0.505\\ 0.505\\ 0.800\\ 1.155\\ 0.505\end{array}$	$\begin{array}{c} 0.013\\ 0.014\\ 0.016\\ 0.017\\ 0.019\\ 0.020\\ 0.022\\ 0.024\\ 0.034\\ 0.041\\ 0.050\\ 0.068\\ 0.075\\ 0.068\\ 0.075\\ 0.082\\ 0.217\\ 0.234\\ 0.255\\ 0.276\\ 0.310\\ 0.382\\ 0.45\\ \end{array}$		$ \begin{array}{c} 0.013\\ 0.014\\ 0.016\\ 0.017\\ 0.019\\ 0.020\\ 0.023\\ 0.033\\ 0.048\\ 0.053\\ 0.053\\ 0.064\\ 0.070\\ 0.076\\ 0.183\\ 0.194\\ 0.202\\ 0.244\\ 0.288\\ 0.321\\ 0.38\\ 0.321\\ 0.38\\ 0.321\\ 0.38\\ 0.321\\ 0.38\\ 0.321\\ 0.38$	$\begin{array}{c} 15.0\\ 15.1\\ 15.8\\ 16.2\\ 16.4\\ 16.5\\ 16.7\\ 16.8\\ 16.8\\ 16.8\\ 16.9\\ 16.9\\ 16.9\\ 16.9\\ 18.0\\ 18.1\\ 18.1\\ 18.0\\$	$\begin{array}{c} 0.18\\ 0.20\\ 0.22\\ 0.31\\ 0.38\\ 0.47\\ 0.53\\ 0.51\\ 0.53\\ 0.54\\ 0.67\\ 0.75\\ 0.87\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.67\\ 0.71\\ 0.91\\ 1.12 \end{array}$	$\begin{array}{c} 0.26\\ 0.29\\ 0.37\\ 0.41\\ 0.62\\ 0.54\\ 0.62\\ 0.72\\ 0.60\\ 0.63\\ 0.77\\ 0.82\\ 0.90\\ 0.96\\ 1.03\\ 0.71\\ 0.85\\ 0.91\\ 0.97\\ 1.21\\ 1.43\\ \end{array}$	$\begin{array}{c} & & & \\$	$\begin{array}{c} 0.0141\\ 0.0132\\ 0.0132\\ 0.0118\\ 0.0105\\ 0.0089\\ 0.0078\\ 0.0072\\ 0.0095\\ 0.0102\\ 0.0102\\ 0.0102\\ 0.0105\\ 0.0104\\ 0.0100\\ 0.0097\\ 0.0304\\ 0.0279\\ 0.0268\\ 0.0268\\ 0.0260\\ 0.0226\\ 0.0226\end{array}$	$\begin{array}{c} 0.002\\ 0.003\\ 0.004\\ 0.006\\ 0.007\\ 0.012\\ 0.012\\ 0.027\\ 0.021\\ 0.027\\ 0.034\\ 0.039\\ 0.048\\ 0.057\\ 0.091\\ 0.110\\ 0.129\\ 0.148\\ 0.172\\ 0.261\\ 0.361\\ \end{array}$	$\begin{array}{c} 190\\ 220\\ 300\\ 360\\ 490\\ 630\\ 870\\ 1040\\ 2210\\ 2210\\ 2210\\ 2210\\ 2330\\ 4100\\ 4840\\ 5750\\ 8080\\ 9740\\ 11400\\ 15200\\ 13100\\ 15200\\ 23100\\ 31900 \end{array}$	$\begin{array}{c} 0.65\\ 0.67\\ 0.72\\ 0.78\\ 0.84\\ 0.88\\ 1.05\\ 1.27\\ 1.34\\ 1.56\\ 1.63\\ 2.64\\ 1.63\\ 2.74\\ 2.87\\ 2.98\\ 3.16\\ 3.51\\ 3.78\end{array}$		0.1 0.1 0.2 2.8 10.4		0.343 0.277 0.168 0.152 0.156 0.176	0.374 0.420 0.501 0.569 0.632 0.621	$\begin{array}{c} 0.0008\\ 0.0009\\ 0.0010\\ 0.0011\\ 0.0012\\ 0.0012\\ 0.0012\\ 0.0026\\ 0.0031\\ 0.0038\\ 0.0047\\ 0.0051\\ 0.0047\\ 0.0051\\ 0.0146\\ 0.0159\\ 0.0146\\ 0.0159\\ 0.0172\\ 0.0194\\ 0.0238\\ 0.0238\\ 0.0238\\ 0.0278\end{array}$	Laminar Lam. & Turb. Turbulent 	None Weak Medium General 	Smooth General riffles 	$\begin{cases} T_{c} = 0.0051 \\ (Visual) \end{cases} \\ \begin{cases} T_{c} = 0.0210 \\ ("Model") \end{cases}$

See Plate 35.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

¥

4

OBSERVED DATA AND COMPUTED RESULTS²

Sand No. 8. Mean Grain Size 0.2053 mm. Uniformity Modulus 0.5597. Test No. 8-0.0015. Slope 0.0015. March 28, 1934.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15a)	(15b)	(16)	(17)	(18)	(19)	(20)	(21)	(22
Run No.	Discharge, Q c. f. s.	Depth, D Pt.	Area ³ Cross-section, A Sq. Ft.	Hydraufic Radius, R Ft.	Water Temper- ature, Degrees Centigrade	Mean	velocit . per s estimation . per s	Bottom de	Manning's n	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity \sqrt{gD} Ft. per Sec.	Length of Run Minutes	Rate Movei Lb. Width -pag	Sand ment ⁴ /Ft. /Hour sns sns	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\end{array} $	$\begin{array}{c} 0.005\\ 0.009\\ 0.021\\ 0.033\\ 0.045\\ 0.090\\ 0.140\\ 0.233\\ 0.298\\ 0.386\\ 0.635\\ 0.900\\ 1.255\\ 1.735\\ 2.238 \end{array}$	$\begin{array}{c} 0.013\\ 0.015\\ 0.029\\ 0.033\\ 0.048\\ 0.051\\ 0.125\\ 0.1465\\ 0.193\\ 0.220\\ 0.296\\ 0.373\\ 0.480\\ 0.592\\ 0.684 \end{array}$	$\begin{array}{c} 0.030\\ 0.035\\ 0.044\\ 0.067\\ 0.077\\ 0.100\\ 0.118\\ 0.289\\ 0.337\\ 0.381\\ 0.446\\ 0.508\\ 0.684\\ 0.862\\ 1.110\\ 1.368\\ 1.580\\ \end{array}$	$\begin{array}{c} 0.013\\ 0.015\\ 0.019\\ 0.028\\ 0.032\\ 0.049\\ 0.113\\ 0.129\\ 0.145\\ 0.185\\ 0.235\\ 0.235\\ 0.392\\ 0.392\\ 0.392\\ 0.429\\ \end{array}$	$\begin{array}{c} 16.2\\ 16.2\\ 16.0\\ 16.0\\ 16.0\\ 16.0\\ 16.0\\ 16.0\\ 16.0\\ 16.5\\ 16.5\\ 16.5\\ 16.5\\ 16.8\\ 16.8\\ 16.9\\ 16.9\\ 17.0\\ \end{array}$	$\begin{array}{c} 0.17\\ 0.25\\ 0.47\\ 0.49\\ 0.59\\ 0.67\\ 0.76\\ 0.48\\ 0.53\\ 0.61\\ 0.67\\ 0.76\\ 0.93\\ 1.04\\ 1.13\\ 1.27\\ 1.42 \end{array}$	$\begin{array}{c} 0.24\\ 0.39\\ 0.65\\ 0.73\\ 0.84\\ 0.93\\ 0.65\\ 0.72\\ 0.81\\ 0.92\\ 1.01\\ 1.25\\ 1.39\\ 1.58\\ 1.87\\ 2.18 \end{array}$	0.75 0.41 0.47 0.48 0.66 0.61 0.77 0.88 0.85 0.82 0.85 0.82 1.18	$\begin{array}{c} 0.0182\\ 0.0134\\ 0.0086\\ 0.0109\\ 0.0100\\ 0.0103\\ 0.0276\\ 0.0276\\ 0.0276\\ 0.0247\\ 0.0246\\ 0.0246\\ 0.0246\\ 0.0243\\ 0.0243\\ 0.0243\\ 0.0231\\ \end{array}$	$\begin{array}{c} 0.002\\ 0.004\\ 0.009\\ 0.014\\ 0.019\\ 0.028\\ 0.037\\ 0.055\\ 0.069\\ 0.088\\ 0.110\\ 0.141\\ 0.218\\ 0.295\\ 0.383\\ 0.497\\ 0.607\\ \end{array}$	$\begin{array}{c} 180\\ 310\\ 730\\ 1160\\ 1580\\ 2320\\ 3100\\ 4550\\ 5720\\ 9270\\ 11900\\ 18600\\ 25200\\ 32700\\ 42400\\ 52300 \end{array}$	$\begin{array}{c} 0.65\\ 0.70\\ 0.78\\ 0.97\\ 1.03\\ 1.18\\ 1.28\\ 2.01\\ 2.17\\ 2.31\\ 2.50\\ 2.66\\ 3.09\\ 3.46\\ 3.93\\ 4.37\\ 4.69 \end{array}$	60 60 60 60 60 45 30	1.1 5.3 7.4 15.7 37.9 57.3	3.2 16.7 26.5	0.164 0.170 0.177 0.167 0.183 0.197	0.605 0.594 0.618 0.658 0.644 0.629	$ \begin{array}{c} 0.0012\\ 0.0014\\ 0.0018\\ 0.0027\\ 0.0031\\ 0.0048\\ 0.0117\\ 0.0154\\ 0.0181\\ 0.0206\\ 0.0277\\ 0.0349\\ 0.0449\\ 0.0554\\ 0.0640 \end{array} $	Laminar Turbulent 	None Weak General 	Smooth General riffles 	$ \{ \begin{array}{l} T_{c} = 0.0048 \\ (Visual) \end{array} \\ \{ \begin{array}{l} T_{c} = 0.0210 \\ (''Model'') \end{array} \} $

See Plate 36.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

à e

\$ 8

OBSERVED DATA AND COMPUTED RESULTS²

Sand No. 8. Mean Grain Size 0.2053 mm. Uniformity Modulus 0.5597. Test No. 8-0.0020. Slope 0.0020. March 31, 1934.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15a)	(15b)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	${ m Depth, D}{ m Ft.}$	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	Water Temper- ature, Degrees Centigrade	Mean	Velocit . per S . saudo . saud	Bottom	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R	Wave Velocity vgD Lb. per Sq. Ft.	Length of Run Minutes	Rate Mover Lb. Width page	Sand nent 4 /Ft. /Hour peor -sng	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10$	$\begin{array}{c} 0.005\\ 0.014\\ 0.034\\ 0.051\\ 0.100\\ 0.128\\ 0.160\\ 0.203\\ 0.283\\ 0.465\end{array}$	$\begin{array}{c} 0.010\\ 0.015\\ 0.026\\ 0.034\\ 0.096\\ 0.111\\ 0.128\\ 0.149\\ 0.184\\ 0.268\end{array}$	$\begin{array}{c} 0.023\\ 0.035\\ 0.060\\ 0.079\\ 0.222\\ 0.256\\ 0.296\\ 0.344\\ 0.425\\ 0.620\\ \end{array}$	$\begin{array}{c} 0.010\\ 0.015\\ 0.025\\ 0.033\\ 0.088\\ 0.101\\ 0.115\\ 0.132\\ 0.158\\ 0.218\\ 0.218\end{array}$	$15.8 \\ 16.0 \\ 16.2 \\ 17.0 \\ 17.5 \\ 17.5 \\ 17.5 \\ 17.6 \\ 17.8 \\ 10.8 \\ $	$\begin{array}{c} 0.22 \\ 0.39 \\ 0.57 \\ 0.64 \\ 0.45 \\ 0.50 \\ 0.54 \\ 0.59 \\ 0.67 \\ 0.75 \end{array}$	$\begin{array}{c} 0.29\\ 0.59\\ 0.76\\ 0.84\\ 0.65\\ 0.73\\ 0.80\\ 0.91\\ 0.91\\ 1.19\\ \end{array}$	0.44 0.46 0.47 0.47	0.0132 0.0099 0.0101 0.0107 0.0293 0.0289 0.0290 0.0291 0.0291 0.0291	$\begin{array}{c} 0.002\\ 0.006\\ 0.014\\ 0.021\\ 0.040\\ 0.051\\ 0.062\\ 0.078\\ 0.105\\ 0.164\\ 0.262\end{array}$	$180 \\ 480 \\ 1200 \\ 1780 \\ 3430 \\ 4390 \\ 5400 \\ 6780 \\ 9220 \\ 14400 \\ 0000 \\ 14400 \\ 0000 \\ $	$\begin{array}{c} 0.57\\ 0.70\\ 0.92\\ 1.05\\ 1.76\\ 1.89\\ 2.03\\ 2.19\\ 2.43\\ 2.94\\ 2.94\\ \end{array}$	60 85 60 60	0.4 0.6 0.5 4.0		0.181 0.202 0.194 0.178	0.633 0.618 0.591 0.653	$\begin{array}{c} 0.0012\\ 0.0019\\ 0.0032\\ 0.0042\\ 0.0120\\ 0.0139\\ 0.0160\\ 0.0186\\ 0.0230\\ 0.0335\\ 0.035$	Laminar Lam. & Turb. Turbulent 	None Weak General 	Smooth General riffles 	$\begin{cases} T_{c}=0.0042 \\ (Visual) \end{cases} \\ \{T_{c}=0.0244 \\ (''Model'') \end{cases}$
$11 \\ 12 \\ 13 \\ 14$	$\begin{array}{c} 0.810 \\ 1.130 \\ 1.758 \\ 2.220 \end{array}$	$\begin{array}{c} 0.355 \\ 0.408 \\ 0.445 \\ 0.425 \end{array}$	0.820 0,943 1.029 0,982	$\begin{array}{c} 0.271 \\ 0.301 \\ 0.321 \\ 0.310 \end{array}$	$ \begin{array}{r} 18.0 \\ 18.2 \\ 18.2 \\ 18.5 \end{array} $	$0.99 \\ 1.20 \\ 1.71 \\ 2.26$	$ \begin{array}{r} 1.52 \\ 1.72 \\ 2.11 \\ 2.56 \end{array} $	$\begin{array}{c} 0.73 \\ 0.88 \\ 0.94 \\ 1.42 \end{array}$	$\begin{array}{c} 0.0282 \\ 0.0248 \\ 0.0182 \\ 0.0135 \end{array}$	$\begin{array}{c} 0.268 \\ 0.362 \\ 0.548 \\ 0.701 \end{array}$	$23700 \\ 32100 \\ 48500 \\ 62500$	$3.48 \\ 3.62 \\ 3.78 \\ 3.70$	$ \begin{array}{c} 45 \\ 30 \\ 20 \\ 15 \end{array} $	$ \begin{array}{r} 19.7 \\ 39.0 \\ 79.3 \\ 143.2 \end{array} $	$0.7 \\ 3.0 \\ 21.0 \\ 36.4$	$\begin{array}{c} 0.187 \\ 0.180 \\ 0.170 \\ 0.192 \end{array}$	$\begin{array}{c} 0.632 \\ 0.555 \\ 0.628 \\ 0.652 \end{array}$	$\begin{array}{c} 0.0443 \\ 0.0509 \\ 0.0555 \\ 0.0530 \end{array}$	2.5 2.4 2.5	45 46 34	Sand waves Almost smooth	Run No. 14 discarded. Non-uniform flow.

See Plate 36.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

¥

ŧ

 \mathbf{SS}

¥

e.

\$ ¥

TABLE 351

Observed Data and Computed Results²

Sand No. 9. Mean Grain Size 4.0769 mm. Uniformity Modulus 0.5661. Test No. 9-0.0030. Slope 0.0030. April 9, 1934.

																		areas in the	** 03 10010		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	Water Temper- ature, Degrees Centigrade	Fi	Velocit . per S estimation	Bottom B	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	$\begin{array}{c} Wave \ \underline{Velocity}\\ \sqrt{gD}\\ Lb.\ per\ Sq.\ Ft. \end{array}$	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M, Dimension-	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\$	$\begin{array}{c} 0.005\\ 0.008\\ 0.018\\ 0.036\\ 0.060\\ 0.095\\ 0.132\\ 0.199\\ 0.272\\ 0.350\\ 0.455\\ 0.580\\ 0.695\\ 0.850\\ 1.040\\ 1.240\\ 1.4405\\ 1.943\\ 2.220\\ \end{array}$	$\begin{array}{c} 0.012\\ 0.016\\ 0.024\\ 0.034\\ 0.069\\ 0.069\\ 0.107\\ 0.124\\ 0.146\\ 0.189\\ 0.215\\ 0.242\\ 0.270\\ 0.305\\ 0.342\\ 0.378\\ 0.444 \end{array}$	$\begin{array}{c} 0.028\\ 0.037\\ 0.055\\ 0.079\\ 0.102\\ 0.134\\ 0.206\\ 0.247\\ 0.331\\ 0.287\\ 0.331\\ 0.496\\ 0.559\\ 0.624\\ 0.705\\ 0.790\\ 0.873\\ 1.025\\ \end{array}$	$\left \begin{array}{c} 0.012\\ 0.016\\ 0.023\\ 0.033\\ 0.043\\ 0.055\\ 0.065\\ 0.083\\ 0.098\\ 0.112\\ 0.125\\ 0.162\\ 0.181\\ 0.200\\ 0.219\\ 0.241\\ 0.264\\ 0.284\\ 0.320\\ \end{array}\right.$	$\begin{array}{c} 18.4\\ 18.5\\ 18.7\\ 18.8\\ 19.0\\ 19.0\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.4\\ 19.6\\ 19.8\\ 19.9\\ 19.8\\ 19.9\\ 19.8\\ \end{array}$	$\begin{array}{c} 0.17\\ 0.22\\ 0.33\\ 0.46\\ 0.59\\ 0.71\\ 0.83\\ 0.97\\ 1.10\\ 1.22\\ 1.37\\ 1.51\\ 1.59\\ 1.71\\ 1.86\\ 1.99\\ 2.04\\ 2.15\\ 2.23\\ 2.17\\ \end{array}$	$\begin{array}{c} 0.35\\ 0.49\\ 0.51\\ 0.65\\ 0.791\\ 1.07\\ 1.27\\ 1.49\\ 1.59\\ 1.72\\ 1.90\\ 2.04\\ 2.22\\ 2.38\\ 2.44\\ 2.60\\ 2.67\\ 2.82\\ 2.94\\ \end{array}$	$\begin{array}{c} 1.26\\ 1.44\\ 1.70\\ 1.72\\ 2.15\\ 2.08\\ 2.49\\ 1.96\\ 2.14\\ 1.92\\ 1.86\end{array}$	$\begin{array}{c} 0.0245\\ 0.0223\\ 0.0196\\ 0.0183\\ 0.0167\\ 0.0160\\ 0.0165\\ 0.0165\\ 0.0158\\ 0.0155\\ 0.0149\\ 0.0152\\ 0.0152\\ 0.0149\\ 0.0152\\ 0.0149\\ 0.0154\\ 0.0156\\ 0.0156\\ 0.0156\\ 0.0176\\ \end{array}$	$\begin{array}{c} 0.002\\ 0.003\\ 0.008\\ 0.015\\ 0.025\\ 0.039\\ 0.054\\ 0.080\\ 0.137\\ 0.175\\ 0.218\\ 0.310\\ 0.258\\ 0.310\\ 0.372\\ 0.567\\ 0.436\\ 0.492\\ 0.567\\ 0.634\\ 0.693 \end{array}$	$\begin{array}{c} 180\\ 310\\ 700\\ 1360\\ 2270\\ 3560\\ 7260\\ 9790\\ 12500\\ 15900\\ 12500\\ 23500\\ 23500\\ 23200\\ 33800\\ 40000\\ 45100\\ 52500\\ 58600\\ 58600\\ 64200\\ \end{array}$	$\begin{array}{c} 0.62\\ 0.72\\ 0.88\\ 1.05\\ 1.19\\ 1.39\\ 1.49\\ 1.89\\ 2.14\\ 2.31\\ 2.47\\ 2.63\\ 2.79\\ 2.95\\ 3.13\\ 3.32\\ 3.49\\ 3.78 \end{array}$		0,1 0,6 1,0 1,6 1,5 20,3	3.602 3.693 3.479 3.643 3.914 3.512	0.608 0.566 0.520 0.558	$\left \begin{array}{c} 0.0023\\ 0.0030\\ 0.0045\\ 0.0064\\ 0.0082\\ 0.0108\\ 0.0129\\ 0.0262\\ 0.0268\\ 0.0311\\ 0.0354\\ 0.0403\\ 0.0453\\ 0.0505\\ 0.0571\\ 0.0640\\ 0.0777\\ 0.0832\end{array}\right $	Lam. & Turb. Turbulent 	None Weak General 	Smooth 	$T_c=0.057$ (Visual and "Model")

See Plate 37.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

â s

Observed Data and Computed Results²

Sand No. 9. Mean Grain Size 4.0769 mm. Uniformity Modulus 0.5661. Test No. 9-0.0040. Slope 0.0040. April 12, 1934.

ż.

£

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulie Radius, R Ft.	Water Temper- ature, Degrees Centigrade	Mean	Velocit . per S . nutace . S	Bottom	Manning's n	Turbulence Criterion VR	Reynolds' Number R Dimensionless	$\begin{array}{l} Wave Velocity \\ \sqrt{gD} \\ Lb. \ per Sq. \ Ft. \end{array}$	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand M, Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\end{array} $	$\begin{array}{c} 0.005\\ 0.008\\ 0.014\\ 0.026\\ 0.045\\ 0.071\\ 0.106\\ 0.155\\ 0.292\\ 0.365\\ 0.505\\ 0.505\\ 0.642\\ 0.765\\ 0.960\\ 1.165\\ 1.350\\ 1.550\\ 1.705\\ \end{array}$	$\begin{array}{c} 0.016\\ 0.020\\ 0.024\\ 0.031\\ 0.042\\ 0.052\\ 0.062\\ 0.076\\ 0.092\\ 0.109\\ 0.126\\ 0.148\\ 0.170\\ 0.224\\ 0.252\\ 0.275\\ 0.302\\ 0.327\\ \end{array}$	$\begin{array}{c} 0.037\\ 0.046\\ 0.055\\ 0.072\\ 0.097\\ 0.120\\ 0.143\\ 0.176\\ 0.213\\ 0.252\\ 0.291\\ 0.342\\ 0.393\\ 0.441\\ 0.517\\ 0.582\\ 0.635\\ 0.697\\ 0.755 \end{array}$	$\begin{array}{c} 0.016\\ 0.020\\ 0.023\\ 0.030\\ 0.041\\ 0.050\\ 0.059\\ 0.071\\ 0.085\\ 0.100\\ 0.114\\ 0.131\\ 0.148\\ 0.164\\ 0.187\\ 0.207\\ 0.222\\ 0.239\\ 0.255\\ \end{array}$	$\begin{array}{c} 18.5\\ 18.4\\ 18.2\\ 18.2\\ 18.2\\ 18.8\\ 19.0\\ 19.1\\ 19.1\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 18.5\\ 18.2\\ 18.1\\ 18.2\\ 18.1\\ 18.2\\ 18.3\\ \end{array}$	$\begin{array}{c} 0.14\\ 0.17\\ 0.25\\ 0.36\\ 0.47\\ 0.59\\ 0.79\\ 1.01\\ 1.16\\ 1.32\\ 1.48\\ 1.64\\ 1.74\\ 1.86\\ 2.00\\ 2.13\\ 2.22\\ 2.26 \end{array}$	$\begin{array}{c} 0.35\\ 0.44\\ 0.49\\ 0.61\\ 0.75\\ 0.92\\ 1.08\\ 1.24\\ 1.45\\ 1.59\\ 1.79\\ 2.02\\ 2.15\\ 2.30\\ 2.41\\ 2.60\\ 2.71\\ 2.94\\ 3.03\\ \end{array}$	2.08 1.78 2.25 2.33 2.33 2.60 2.89 1.85 1.78 1.93 1.86	$\begin{array}{c} 0.0416\\ 0.0406\\ 0.0304\\ 0.0253\\ 0.0237\\ 0.0216\\ 0.0193\\ 0.0184\\ 0.0180\\ 0.0166\\ 0.0162\\ 0.0166\\ 0.0162\\ 0.0166\\ 0.0162\\ 0.0162\\ 0.0162\\ 0.0162\\ 0.0163\\ 0.0163\\ 0.0163\end{array}$	$\begin{array}{c} 0.002\\ 0.003\\ 0.006\\ 0.011\\ 0.019\\ 0.029\\ 0.044\\ 0.062\\ 0.115\\ 0.150\\ 0.193\\ 0.242\\ 0.284\\ 0.347\\ 0.414\\ 0.471\\ 0.530\\ 0.575 \end{array}$	$\begin{array}{c} 190\\ 290\\ 530\\ 970\\ 1700\\ 2680\\ 5840\\ 7830\\ 10500\\ 13700\\ 17600\\ 22000\\ 22000\\ 25800\\ 31000\\ 31000\\ 36700\\ 41700\\ 46900\\ 50900\\ \end{array}$	$ \begin{bmatrix} 0.72 \\ 0.80 \\ 0.88 \\ 1.00 \\ 1.16 \\ 1.29 \\ 1.41 \\ 1.57 \\ 1.72 \\ 2.18 \\ 2.34 \\ 2.48 \\ 2.68 \\ 2.85 \\ 2.98 \\ 3.12 \\ 3.24 \end{bmatrix} $	60 60 60 40 30	0.8 2.3 16.5 24.1 32.6	3.880 4.254 3.619 4.071 3.831	0.627 0.649 0.589 0.607 0.564	$\begin{array}{c} 0.0040\\ 0.0050\\ 0.0060\\ 0.0077\\ 0.0105\\ 0.0130\\ 0.0230\\ 0.0272\\ 0.0315\\ 0.0315\\ 0.0370\\ 0.0424\\ 0.0559\\ 0.0629\\ 0.0687\\ 0.0754\\ 0.0816\\ \end{array}$	Lam. & Turb. Turbulent 	None Weak Medium General 	Smooth Scours	Tc=0.057 (Visual and "Model")

See Plate 37.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

Ņ

8

 $\frac{35}{28}$

\$ +

TABLE 37 1

Observed Data and Computed Results²

Sand No. 9. Mean Grain Size 4.0769 mm. Uniformity Modulus 0.5661. Test No. 9-0.0045. Slope 0.0045. April 16, 1934.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Run No.	Discharge, Q c. f. s.	Depth, D Ft.	Area ³ Cross-section, A Sq. Ft.	Hydraulic Radius, R Ft.	Water Temper- ature, Degrees Centigrade	Mean	Velocit t. per s surface S	Bottom Bottom	Manning's <i>n</i>	Turbulence Criterion VR	Reynolds' Number R Dimensionless	Wave Velocity $\sqrt{\mathrm{gD}}$ Ft. per Sec.	Length of Run Minutes	Rate Sand Movement ⁴ Lb./Ft. Width/Hour	Mean Size of Trapped Sand dg, mm.	Uniformity Modulus of Trapped Sand, M. Dimension- less	Tractive Force T Lb. per Sq. Ft.	Nature of Flow	Nature of Sand Movement	Condition of Bed	Remarks
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 18 \\ 16 \\ 18 \\ 18 \\ 18 \\ 10 \\ 11 \\ 12 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 18 \\ 10 \\ 11 \\ 12 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 10 \\ 11 \\ 12 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 15 \\ 16 \\ 17 \\ 18 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	$\begin{array}{c} 0.005\\ 0.007\\ 0.015\\ 0.035\\ 0.066\\ 0.107\\ 0.155\\ 0.219\\ 0.290\\ 0.397\\ 0.492\\ 0.625\\ 0.693\\ 0.800\\ 0.945\\ 1.110\\ 1.220\\ 1.430\\ \end{array}$	$\begin{array}{c} 0.011\\ 0.013\\ 0.020\\ 0.030\\ 0.043\\ 0.056\\ 0.069\\ 0.085\\ 0.099\\ 0.120\\ 0.137\\ 0.158\\ 0.189\\ 0.212\\ 0.232\\ 0.223\\ 0.253\\ 0.282\\ 0.283\\ 0.282\\ 0.283\\ 0.283\\ 0.282\\ 0.283\\ 0.283\\ 0.282\\ 0.283\\ 0.$	$\begin{array}{c} 0.025\\ 0.030\\ 0.046\\ 0.069\\ 0.129\\ 0.129\\ 0.160\\ 0.229\\ 0.277\\ 0.316\\ 0.365\\ 0.388\\ 0.436\\ 0.436\\ 0.436\\ 0.436\\ 0.535\\ 0.584\\ 0.651\end{array}$	$\left \begin{array}{c} 0.011\\ 0.013\\ 0.020\\ 0.029\\ 0.041\\ 0.053\\ 0.065\\ 0.079\\ 0.041\\ 0.109\\ 0.122\\ 0.139\\ 0.147\\ 0.162\\ 0.179\\ 0.193\\ 0.207\\ 0.22\\ 0.22$	$\begin{array}{c} 18.5\\ 18.5\\ 18.5\\ 18.5\\ 18.8\\ 19.0\\ 19.0\\ 19.0\\ 19.0\\ 19.1\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.2\\ 19.5\\ 19.6\\ 20.0\\ \end{array}$	$\begin{array}{c} 0.19\\ 0.24\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 0.97\\ 1.12\\ 1.27\\ 1.43\\ 1.56\\ 1.71\\ 1.79\\ 1.83\\ 1.93\\ 2.08\\ 2.08\\ 2.20\\ \end{array}$	$\begin{array}{c} 0.38\\ 0.51\\ 0.56\\ 0.71\\ 0.93\\ 1.14\\ 1.29\\ 1.48\\ 1.67\\ 1.84\\ 2.00\\ 2.18\\ 2.28\\ 2.38\\ 2.60\\ 2.67\\ 2.86\\ 2.94\\ \end{array}$	1.05 1.32 1.42 1.78 1.78 1.86 1.86 2.09 1.93 1.79 1.86	$\begin{array}{c} 0.0258\\ 0.0220\\ 0.0214\\ 0.0188\\ 0.0178\\ 0.0165\\ 0.0165\\ 0.0165\\ 0.0157\\ 0.0157\\ 0.0154\\ 0.0164\\ 0.0164\\ 0.0160\\ 0.0167\\ 0.0167\\ 0.0167\\ 0.0167\\ 0.0167\\ 0.0167\\ 0.0167\\ 0.0168\\ 0.0167\\ 0.0168\\ 0.0068\\$	$\begin{array}{c} 0.002\\ 0.003\\ 0.007\\ 0.015\\ 0.028\\ 0.063\\ 0.088\\ 0.1156\\ 0.191\\ 0.238\\ 0.262\\ 0.297\\ 0.346\\ 0.490\\ 0.433\\ 0.493\\ 0.493\\ \end{array}$	$\begin{array}{c} 180\\ 280\\ 590\\ 1320\\ 2480\\ 3960\\ 7930\\ 10500\\ 10500\\ 14200\\ 17300\\ 23800\\ 27000\\ 23800\\ 27000\\ 31400\\ 36700\\ 39700\\ 46100\end{array}$	$\begin{array}{c} 0.60\\ 0.65\\ 0.80\\ 0.98\\ 1.18\\ 1.35\\ 1.49\\ 1.66\\ 1.79\\ 1.97\\ 2.10\\ 2.26\\ 2.33\\ 2.47\\ 2.62\\ 2.74\\ 2.86\\ 3.02 \end{array}$		0.5	4.398 3.963 4.132 3.010	0.654	$\begin{array}{c} 0.0031\\ 0.0036\\ 0.0056\\ 0.0084\\ 0.0121\\ 0.0157\\ 0.0194\\ 0.0239\\ 0.0278\\ 0.0387\\ 0.0385\\ 0.0443\\ 0.0472\\ 0.0530\\ 0.0595\\ 0.0651\\ 0.0710\\ 0.0701\end{array}$	Lam. &Turb. Turbulent 	None Weak Medium	Smooth 	$ \{ \begin{array}{l} T_e = 0.0600 \\ (Visual and "Model") \end{array} $
$ \begin{array}{c} 19 \\ 20 \\ 21 \end{array} $	$\frac{1.670}{1.948}\\ 2.226$	$\begin{array}{c} 0.314 \\ 0.351 \\ 0.400 \end{array}$	$\begin{array}{c c} 0.725 \\ 0.811 \\ 0.925 \end{array}$	$\begin{array}{c} 0.246 \\ 0.269 \\ 0.297 \end{array}$	$\begin{array}{c} 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \end{array}$	$2.31 \\ 2.40 \\ 2.41$	$\frac{2.01}{3.03}$ $\frac{3.18}{3.33}$	$ \begin{array}{c} 1.30 \\ 2.24 \\ 2.33 \\ 2.50 \end{array} $	$\begin{array}{c} 0.0170 \\ 0.0172 \\ 0.0184 \end{array}$	$0.567 \\ 0.645 \\ 0.716$	$52500 \\ 59700 \\ 66200$	$3.18 \\ 3.36 \\ 3.59$	$ \begin{array}{c} 30 \\ 30 \\ 22 \\ 20 \end{array} $	$ \begin{array}{r} 39.8 \\ 52.2 \\ 43.6 \end{array} $	$3.602 \\ 3.715 \\ 3.492$	$0.504 \\ 0.565 \\ 0.579 \\ 0.555$	$\begin{array}{c} 0.0791 \\ 0.0881 \\ 0.0985 \\ 0.1121 \end{array}$	4 4 4 4 5 4	General	Scours 	

See Plate 38.
 All values in English units except grain size in millimeters.
 Width of flume 2.313 ft.
 Dry weight.

PLATE 25

VARIATION OF SAND DISCHARGE, MEAN VELOCITY, MANNING'S n, AND MEAN GRAIN SIZE WITH DEPTH

VARIATION OF SAND DISCHARGE, MEAN VELOCITY, MANNING'S N, AND MEAN GRAIN SIZE WITH DEPTH

VARIATION OF SAND DISCHARGE, MEAN VELOCITY, MANNING'S n, AND MEAN GRAIN SIZE WITH DEPTH

Variation of Sand Discharge, Mean Velocity, Manning's n, and Mean Grain Size with Depth

Variation of Sand Discharge. Mean Velocity, Manning's n, and Mean Grain Size with Depth

Variation of Sand Discharge, Mean Velocity, Manning's n, and Mean Grain Size with Depth

VARIATION OF SAND DISCHARGE, MEAN VELOCITY, MANNING'S N, AND MEAN GRAIN SIZE WITH DEPTH

03 DEPTH -FEET SAND NO. 7 - SLOPE 0.0015

0. - 6.843.

0,00,00107

COMEAN VELOCI

D. - 0.062 (-SAND DISC 0

97

SAND

Note—The bed-load rate is greater than the suspended load rate throughout the range of this test. The curves cross because the bed-load curve, drawn from Plate 19b, is the average derived from data from three slopes, while the suspended load curve follows the individual points.

PLATE 35

Variation of Sand Discharge, Mean Velocity, Manning's n and Mean Grain Size with Depth

Plate 36

VARIATION OF SAND DISCHARGE, MEAN VELOCITY, MANNING'S n, AND MEAN GRAIN SIZE WITH DEPTH

Variation of Sand Discharge, Mean Velocity, Manning's n, and Mean Grain Size with Depth

Sands Nos. 2 and 3

Sand No. 9

3 v.3

ß

1

PLATE 46 Progressive Variation of Size and Distribution of Grains in Movement Sand No. 2

4

۹.

PLATE 47 E AND DISTRIBUTION Sand No. 3 GRAINS

4 9

110

-à ->

Plate 48 Progressive Variation of Size and Distribution of Grains in Movement Sand No. 4 8

ŧ.

lig Allena.

\$

\$ j

é

ø

4

.

PLATE 52 Progressive Variation of Size and Distribution of Grains in Movement Sand No. 9 \$

\$

6 K

PART II

STUDIES OF COMPOSITION OF BED MATERIALS IN MISSISSIPPI RIVER SYSTEM

SCOPE AND PROCEDURE

For many years engineers working on the Mississippi River have been restricted by a paucity of data regarding the type of material making up the bed of the stream. In spite of the fact that scattered observations had been made from time to time, no thorough, comprehensive survey had ever been undertaken to determine the distribution of the various materials throughout the length of the Lower Mississippi. Thus, although the theory has been held by most river hydraulicians that there is a progressive downstream decrease in the size of the particles composing the bed of the lower Mississippi, there have not been sufficient data to prove or disprove this theory.

During the fall of 1932, a survey of bed materials of the Mississippi River was conducted, under the supervision of Mr. Charles W. Schweizer, Engineer, of the Mississippi River Commission. Between Cairo, Illinois, and New Orleans, Louisiana, 531 samples were taken from the talweg of the Mississippi. In addition 143 samples were taken from the beds of the Ohio, Atchafalaya, Old, Black, and Red Rivers. In May, 1934, further information being desired as to the material in the river bed below New Orleans, another series of talweg samples was taken between that point and the Gulf of Mexico. Eighty-four samples were obtained from the Mississippi, including material from all the principal passes and several of the minor outlets to the Gulf.

The samples were sent to the U. S. Waterways Experiment Station, where they were split into two parts; one was retained at the Station and the other was sent to the Geology Department of the Louisiana State University. Each portion retained at this Station was subjected to a close analysis to determine its physical properties and, from these, the factors influencing its rate of movement. That sent to the University is being used in a comprehensive petrographic study of the Mississippi River system.

After the completion of the analyses, a small quantity of material from each sample was sealed in a thin cardboard box with celophane face. Such pertinent data as location, mile number, mean grain size, uniformity modulus, etc., appear on the face, in the manner shown in Plate 55, which pictures one of the boxes. These will be kept in a permanent file at the office of the Mississippi River Commission at Vicksburg.

The results of the physical and mechanical analyses are presented in Tables 39 to 42, herein, followed by such conclusions as have been made to date. The petrographic survey has been started only recently; consequently, no results have been included in this report. The reader is referred to "The Improvement of the Lower Mississippi River for Flood Control and Navigation", printed in 1932, by the U. S. Waterways Experiment Station, for a complete report on the history of the Mississippi River and its tributaries, its

.

4 ¢

PLATE 54

·118

physical characteristics, hydraulics, methods of transporting sediment, etc.; and to "Sedimentation in the Mississippi River Between Davenport, Iowa, and Cairo, Illinois", by Alvin L. Lugn, published in 1927 by the Augustana College and Theological Seminary, Rock Island, Illinois. This latter publication presents the results of the investigation of sediment and bed material made by Mr. Lugn in 1925. Reference is also made to Papers H and U of the Station, in which are presented the results of studies made prior to 1932 to determine the quantity and distribution of sediment in suspension in the Mississippi and several tributaries. The results of a similar sediment investigation, made during the Spring high water of 1932, will be printed in a later paper of the Waterways Experiment Station.

M.E.C.St L. Mo.300.9-22-33 LOCATION: Mi. 76.50 MISSISSIPPI RIVER 9-11-32 (Date) STATION: Talweg depth 17 feet GAGE AT NEW MADRID Reading 7.8 ft. = El.263.76 ft. M.G.L. How obtained: With bucket sampler This sample rep-Gravel present: Yes resents: Coarse sand Sizes: 1.17 to 6.68 mm. and small gravel Average Grain Diameter =1.29 millimeters Foreign Matter: Considerable coal. (Over)

Plate 55

PERMANENT CONTAINER FOR RIVER BED SAMPLE

Purpose

As stated in Part I, the purpose of the entire series of investigations of river bed materials was "to discover and evaluate laws to the end that the river hydraulician might be able to calculate the action of a given bed material under given conditions." The more immediate purpose of this portion of the investigation, however, was to determine the composition of the material in the bed of the Lower Mississippi, and its progressive variation throughout the course of the river. The information presented in the tables and curves in this part of the report may be considered as one step toward the realization of this goal. It should be noted here that authority has recently been given for a further investigation of the bed material of the Mississippi River and its tributaries, which is planned to include such streams as the Missouri, Illinois, Ohio, Arkansas, White, Red, and other rivers.

Procuring the Samples

The bed samples were taken by a field party on specially scheduled trips of Engineer Department towboats. In general, each District was responsible for supplying the floating equipment necessary to procure the samples within the part of the river in its jurisdiction. Table 38 shows the dates when the various portions of the river were traversed, along with the number of samples secured in the various Districts, and Plate 54, a map of the Lower Mississippi Valley, shows the mileages, to which the samples are referred. Plate 53, showing the watershed of the Mississippi, is included for general reference.

TABLE 38

River	Engineer District	Mile	Number of Samples	Date
Mississippi	Memphis	0-400	209	Sept. 10-17, 1932
	-	below Cairo		
Mississippi	Vicksburg	400-610	217	Oct. 20-25, 1932
		below Cairo		
Mississippi	2nd	610-977	105	Aug. 23-30, 1932
	New Orleans	below Cairo		
Mississippi	1st	977-Gulf	84	May 1-5, 1934
01.	New Orleans*			C . 10 1000
Ohio	Louisville	0-1	2	Sept. 10, 1932
		above Cairo	110	37 0 17 1000
Atchafa-	2nd	0-148	110	Nov. 9-17, 1932
laya	New Orleans	below head	10	N 0 15 1000
Old	Vicksburg	0-7	12	Nov. 9-17, 1932
		above Miss.		
DL - L	X7: 1 1	River	-	N 0 17 1090
ыаск	vicksburg	0-4	Э	Nov. 9-17, 1932
Ded	Vielschung	above mouth	14	Nov. 0.17 1029
neu	vicksburg	1-01 above Miss	14	NOV. 9-17, 1952
		Bivor		
		niver		
		Total	758	

Samples of Bed Material of Mississippi River and Tributaries

* Samples collected by 2nd New Orleans District.

The Sampler:

After several years of experimentation with various types of samplers, the device pictured in Plate 56 has been developed, and has proved quite successful. It is designed to pick up samples of material from the bed of the river, and is expected to produce only qualitative (not quantitative) results. The sampler consists simply of a steel pipe 4 inches in inside diameter and 4 feet long, closed at one end, and flaring at the other end to a diameter of about 8 inches. The device is attached by means of a bail to a $1\frac{1}{4}$ -inch rope, with which it is controlled from the boat.

Use of the Sampler:

Practice has shown that the sampler operates best when it is dragged along the bottom in a downstream direction, as indicated in the sketch of Plate 57. The reason for this is that when it is dragged upstream, the force of the current tends to belly the rope in

Plate 56 Sampler Used For Procuring River Bed Material

such a manner as to pull the mouth of the sampler off the bottom of the stream. When it is dragged downstream, on the other hand, the sag of the rope keeps the mouth in contact with the bed. When a sample is being taken, the speed of the boat is reduced until there is practically no motion with respect to the current. The sampler is then dropped overboard, and several hundred feet of line are paid

METHOD OF USING THE SILT SAMPLER

out, to allow the device to remain on the bottom, after which it is pulled along at the approximate speed of the current by the drifting boat, until a sufficient quantity of material has been obtained. The pipe is then pulled in, the contents emptied by dropping the open end of the pipe on a board, and a sample of the material is placed in a properly marked can.

The samples of the bed material retained at the U.S. Waterways Experiment Station were analyzed in the soil mechanics laboratory, to determine the percentages of the various sized grains, the absolute specific gravity, the shape of the grains, and the presence of such material as mica, lignite, and iron oxide.

Mechanical Analysis:

The mechanical analysis has yielded most of the basic information on the physical properties of the soils, when studied as a bedload material. The samples were all prepared for testing by being dried for 5 hours in an electric oven, which maintained a constant temperature of 105° C. They were then allowed to cool to room temperature, and were reduced with a sample splitter until a representative sample of approximately 200 grams was obtained. The samples of cohesionless material (grain size larger than 0.074 mm) were subjected to a sieve analysis. A set of standard Tyler sieves and a Ro-Tap machine were used, the latter equipped with a Stop-Rite time switch to insure uniform shaking of all samples for the same period of time (20 minutes). The remaining details of this analysis are standardized and used universally; hence no further description is deemed necessary. The samples of cohesive material were analyzed by the hydrometer method. For this test a density hydrometer was used, having a range of 0.995 to 1.040, and reading to $0.002\pm$. The procedure and details of this test as described in "The Hydrometer Method of Mechanical Analysis of Soils and other Granular Materials"* were followed.

Absolute Specific Gravity:

The pycnometer method of determining the specific gravity of soil was used because of its reliability and simplicity. The values determined for the sand samples were found to be fairly constant, about 2.65, but those for the clay and silt varied from this to a maximum of about 2.80. The air in the voids of the soil was released by boiling the mixture of soil and water in the pycnometer bottle.

Petrographic Analysis**:

The purpose of the petrographic study of bed samples from the Mississippi River is the determination of the mineralogical composition of the material and of changes in the material effected by transportation by the river. The procedure which is being followed in the investigation is as follows:

First, samples differing in grain size, but collected from closely adjacent points where there is no possibility of addition of new material between the samples, are being studied in detail to determine the distribution of minerals and of rounded grains in different grade In addition, detailed studies are being made of several represizes.

 ^{*} Prepared by Mr. Arthur Casagrande for the U. S. Bureau of Soils at the Massachusetts Institute of Technology, Cambridge, Massachusetts.
 ** Written by Dr. R. Dana Russell, Assistant Professor of Geology at the Louisiana State University, who is conducting the petrographic study.

sentative samples taken from the river between Cairo and New Orleans. This phase of the study includes percentage determination of minerals, and of rounding in every grade size, as far as possible, with the expectation that a legitimate basis of comparison for all the samples will be discovered. The procedure used in this detailed study consists of the separation of the whole sample into grade sizes, the further separation of each grade into a light and heavy fraction by means of bromoform, and a percentage determination, by count, of the minerals in both the light and heavy fractions of each grade size. The percentage of well-rounded, rounded, sub-rounded, sub-angular, and angular quartz grains in each grade size is also determined by count, using photographs of type grains for comparison (see Plate 4, page 7).

Second, with a legitimate basis of comparison established by the detailed work outlined above, the majority of the samples will then be studied in a similar fashion, with the exception that only one or two representative grade sizes will be separated from each sample for comparison.

RESULTS OF ANALYSES

Presentation of Data

The data from all these samples are summarized in Tables 39 to In Tables 39 and 40 is given the complete size distribution of 42.each sample of material. The samples are designated by mile number in the first column (see Plate 54), and each of the successive figures in the rows across the page represents the percentage of the sample which is finer than the arbitrary size heading the column. It will be noted that the U.S. Bureau of Soils classification of materials has been bracketed above the sieve sizes, in such a manner that the percentage of the samples falling within the clay, silt, sand, or gravel range can easily be calculated. It must be understood that the exact points of division between the Bureau of Soils designations are not obtainable from this table, owing to the fact that the sizes heading the columns correspond to the sizes of the openings in the sieves which were used in the analyses. The Bureau of Soils classification follows: Clay-up to 0.005 mm; silt-0.005 to 0.05 mm; very fine sand-0.05 to 0.1 mm; fine sand-0.1 to 0.25 mm; medium sand-0.25 to 0.50 mm; coarse sand—0.50 to 1.0 mm; fine gravel—1.0 to 2.0 mm; medium gravel-2.0 to 10.0 mm; large gravel-10.0 to 100.0 mm.

It should be noted that the values in the silt and clay range are interpolated; the arbitrary sizes heading the columns in these ranges were chosen close to the sizes dividing the classes. This interpolation was made necessary by the fact that the hydrometer method of analysis does not lead to the sorting of the particles into definite size classifications, as does the sieve analysis. Rather, the tabulation of a hydrometer analysis leads to a series of simultaneous values, size, and percentage finer than that size, with no regularity between any two samples as to the sizes shown. Hence, in order to simplify the tabulation of a large number of samples, it became necessary to interpolate each sample into the percentages finer than the chosen sizes.

Tables 41 and 42 contain the physical data for the same samples, with the river mileage again the distinguishing designation. The method used in computing the mean grain size, median grain size, and uniformity modulus are discussed on page 5 of this report. In the "locality" column are given the geographical locations from which the samples were taken.

In addition to the complete presentation of data in Tables 39 to 42, Plates 58, 59, and 60 are included, showing the results of the studies which have been made to date of the systematic variation in the composition of the materials in the Mississippi River. The manner in which these plates were prepared is explained in the following paragraphs:

Plate 58:

This illustration shows the steady decrease in the percentage of large materials in the samples, and the corresponding increase in the percentage of fine sands and silts. In calculating the data for this diagram, the sieve sizes nearest to those dividing the U. S. Bureau of Soils classes were selected for study. For the values plotted at Mile $12\frac{1}{2}$, for instance, all the samples between Miles 0 and 25 were included in the computation, and the average percentage passing each of the arbitrary sizes was determined. The same averages were determined for the samples between Miles 25 and 50, and the values plotted at Mile $37\frac{1}{2}$; this procedure was followed for each 25-mile reach from Cairo to the Gulf, following Southwest Pass below the Head of Passes.

To interpret the curve, the vertical distance between adjacent jagged lines represents the percentage of the material falling in the class noted between the lines. At Mile 500, for example, the percentage of coarse sand is about 76 minus 29, or 47 per cent, that of fine sand is 29 minus 3, or 26 per cent, etc. At Cairo it is evident that nearly 50 per cent of the material is coarse sand or gravel, and that there is only a small percentage of silt and clay. At New Orleans, on the other hand, the material is almost all fine sand, silt, or clay. Between these points there is a steady, though irregular, increase in the proportion of fine particles, while below New Orleans there is a rapid increase in the percentage of silt and clay.

Plate 59:

The mean grain diameters have been averaged by 25-mile reaches and plotted on this diagram. The extremely high peaks in the dashed line are due to the occasional occurrence of large gravel samples, and their influence is seen in the solid line, presenting the average for all the samples. The dash-dot line was drawn to show the general variation of the materials other than the extremely large gravels, and fits in consistently with the trend noticed in Plate 58, showing a definite downstream decrease in the size of the materials.

Plate 60:

It was desired to determine the variation in the size of the sand portion of the samples, eliminating from consideration the portion of each sample outside this classification. Accordingly, the average size of the sand portion of each of the samples was computed in the manner described in Part I, page 5, and these means were averaged by 25- and 10-mile reaches. The same downward trend in size is evident from the curves, with fewer and less violent irregularities appearing in the 25-mile averages.

DISCUSSION

The principal geographic locations have been noted on each of these plates in their proper positions. Care should be taken that no hasty conclusions are drawn from the coincidence of certain of these locations with irregularities in the curves. In Plate 59, for instance, a peak in the mean grain size appears at about Mile 410, just below the mouths of the Arkansas and White Rivers. The hasty conclusion might be made that this sudden increase in size is caused by the

PLATE 59

influx of large materials from these tributary rivers. Actually, this peak is caused by the appearance of three large samples, one from a gravel bar about 4 miles below the mouth of White River, and two from a gravel bar about 3 miles below the mouth of the Arkansas. Whether these bars were built up from materials discharged by the tributary rivers is a question that cannot be determined from this study.

Since the peak near the mouth of the St. Francis River is caused by one sample about 5 miles above the mouth, the possible conclusion that it is caused from the discharge of large material by the St. Francis is clearly fallacious. Similarly, care should be taken, in interpreting all these curves, to study the data in the tables before drawing any conclusions as to the cause of the irregularities.

It should also be remembered that these samples were all taken from the talweg of the river, and do not necessarily represent the material which was in transportation, since they were scooped off the bottom itself. Further, they were all taken at low stages of the

river, and the material found may be different from that which would be taken at other stages.

These studies, then, while they represent a long step forward in the accumulation of knowledge of the materials composing the beds of streams, can be considered only preliminary in nature. The scope of the investigation should eventually be enlarged to include the taking of samples from all points in many representative transverse sections of the river, at stages varying from the extremely low to the extremely high. Also, instruments must be perfected with which samples of the moving materials can be taken, from which quantitative as well as qualitative results can be obtained.

TABLE	39
الانجاسية الباري والبار	2.6.25

Mechanical Analyses of Material from Bed of Mississippi River.*

Accumulative Per Cent Finer

Miles	Large	Gravel	Med	ium Gra	vel	Fine ((U	Fravel , S. Bur	Coarse reau of S	sand Soils Cla	Mediur ssificatio	n Sand n)	Fine	Sand	Very Fine Sand	s	ilt	Cl	lay
Cairo							Size	of openi	ing in m	m.								
0.000	28 10	12 22	6 680	3 297	2 362	1 651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
Parageneral Sec. (), Contraction and Sector 2010 (Sector Sector)	1 99.10	10.00	0.000	0.041					<u></u>			1						
0		100.0	91.9	74.8	66.9	58.1	-49.1	40.0	27.2	12.3	5.0	1.0	0.1	0.1		17 6		1. 10 m and an an an
ő		10010		10 Jan 10 10 10 10 10		~~~~~~	******			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~ 57 ~ 5	100.0	77.0	00.2	90.9	11.4		
ž			100.0	99.9	99.8	99.8	99.6	99.1	96.0	88.0	27.4 92.6	3.0	0.2	0.1	we also also be the off the			
10		100.0	97.0	92.6	88.9	84.8	10.5	40.7	21.9	94.2	20 1	5.0	0.2	0.1				
12^{+}	81.1	72.9	68.2	03.8	00.3	00.2	80.2	89.2	57 8	21.3	-5.2	1.8	0.1	0.0				
13	100.0	94.0	92.2	91.9 91.9	91.7 55 B	52.7	52 1	50 4	43.7	20.7	6.1	1.8	0.1	0.0			1	
13A	100.0	10.4	09.0	00.0	00.0	100.0	99.9	99.9	99.7	99.5	99.3	56.8	0.4	0.1				
14	100.0	66 3	58.5	54.1	52.7	51.6	50.6	49.6	48.5	47.5	46.9	46.0	43.3	43.0				
10/2	100.0	100.0	90.9	82.1	77.2	70.2	62.9	54.3	-37.8	16.5	4.8	0.8	0.1	0.1	10 10 10 10 10 10 10 10			
1074	100.0	98.3	91.8	86.1	84.2	81.3	77.1	70.5	56.8	41.0	20.4	3.6	0.1	0.0				
21	10010		100.0	99.7	99.0	97.7	95.8	92.8	85.4	73.3	53.3	30.7	4.4	0.8				
221/2	100.0	59.4	44.3	33.6	29.4	25.9	22.4	19.2	14.1	8.4	4.0	1.9	0.0	0.3				0
231/3	100.0	87.8	81.4	78.3	77.0	75.3	72.3	66.1	44.0	10.1	22 0	16 1	0.4	0.5				
25	100.0	99.2	93.3	[-79.1]	71.7	65.5	00.3	37.7	15 6	7.9	9 7	0.8	0.1	0.1				
27	100.0	93.2	87.3	72.2	02.0	09 7	06.6	84.7	39.1	7.8	2.4	1.3	0.2	0.0				
$29\frac{1}{2}$		100.0	99.7	99.3	03.3	87.6	77 1	58.2	22.7	5.8	1.8	0.6	0.1	0.0				
31		100.0	08.5	07.3	96.0	93.6	89.4	82.7	67.3	37.3	10.6	2.3	0.1	0.0				
32		100.0	98.8	98.1	97 3	96.2	93.9	89.8	78.6	55.9	40.5	22.6	0.9	0.2				
30 9717	100.0	89 0	79.8	71.5	64.5	53.4	39.9	27.3	18.5	16.1	15.2	13.4	4.0	1.7				
$\frac{\partial I}{22}$	83.8	24.5	12.5	6.9	5.7	4.6	3.7	2.8	1.4	0.7	0.4	0.3	0.1	0.1				
41	100.0	97.9	96.9	94.5	92.3	88.8	82.5	72.6	49.8	20.1	6.6	1.1	0.1	0.0				
43		100.0	99.2	95.1	91.3	87.4	83.4	79.6	61.9	20.5	13.3	10.0	4.9	a.a 0 t				
44	******				100.0	99.9	99.9	99.7	98.0	80.0	$\begin{bmatrix} 21.7\\ 14.0 \end{bmatrix}$	0.0	0.5	0.1				
441/4			100.0	99.3	98.7	98.3	98.0	97.5	90.0	64 6	22.3	11.8	2 1	0.7				
$48\frac{1}{2}$	1		100.0	99.8	99.6	99.2	97.2	91.7	55 9	01.0	11.8	7 3	ĩi	0.2				
51	10. 10. 10. 10. 10. 10. 10.	100.0	99.6	98.7	97.0	94.9	90.2	87 1	80.0	34 7	10.3	1.õ	0.1	0.0				
$55\frac{1}{2}$		100.0	98.1	90.7	95.9	08 1	06 7	03 6	89.0	77.7	55.9	27.8	0.1	0.0				
56			100.0	00.4	00 4	00.3	00.2	98.5	92.8	71.4	35.1	12.1	0.2	0.1				
56 1/4	100.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100.0	79.7	67.6	62.6	57 0	50.7	38.5	22.1	11.3	4.5	0.6	0.1				
60	100.0	100.0	08.7	06.9	95.9	95.6	95.3	94.9	93.6	89.0	68.9	18.3	0.4	0.1				
61	100 0	04 2	77 3	59 3	51.2	43.8	37.3	31.1	21.4	8.9	2.6	0.4	0.1	0.1	~~~~~		-	
00	100.0	100.0	98.8	96.2	93.9	90.3	84.2	24.4	51.4	20.3	5.2	1.1	0.1	0.0			1	
70	100.0	80.5	66.2	57.9	54.2	50.3	46.1	40.5	28.2	12.1	4.1	0.9	0.1	0.0				
7916	100.0	97.3	94.1	89.9	86.3	80.8	73.2	63.1	46.2	23.8	6.6	1.3	0.1				~ - ~ ~ ~ ~ ~	
$\frac{1}{76\frac{1}{2}}$		100.0	99.1	95.0	89.7	80.2	65.4	146.0	20.0	6 3.8	+ 0.7	+ 0.2	0.1	+ 0.0				

*See also Table 41. †100% finer than 50.8 mm.

5 R

TABLE	-39Con	tinued.

\$

. .

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles Below	Large	Gravel	Med	lium Gra	ivel	Fine (Gravel J. S. Bu	Coarse reau of	e Sand Soils Cla	Mediur	n Sand on)	Fine	Sand	Very Fine Sand	s	ilt	CI	lay
Cairo							Size	of open	ing in n	ım,								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
$\begin{array}{c} 78\\ 80\\ 81\\ 87\\ 88^{1/2}\\ 91\\ 92\\ 94\\ 98\\ 100^{1/2}\\ 102\\ 102\\ 102\\ 106\\ 106\\ 106\\ 106\\ 113\\ 115^{1/2}\\ 124\\ 128\\ 131^{1/2}\\ 138\\ 141^{1/2}\\ 144\\ 146\\ 150^{1/2}\\ 159^{1/2}\\ 159^{1/2}\\ 159^{1/2}\\ 161^{1/2}\\ 163^{3/4}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/2}\\ 170^{3/$	38.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	$\begin{array}{c} 13.33\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 82.2\\ 100.0\\ 33.8\\ 86.3\\ 96.6\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 98.2\\ 98.2\\ 98.2\\ 100.0\\ 91.1\\ 100.0\\ 91.1\\ 100.0\\ 91.1\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0$	$\begin{array}{c} 6.680\\ 98.8\\ 97.8\\ 97.8\\ 97.8\\ 99.6\\ 99.7\\ 99.6\\ 99.8\\ 23.4\\ 83.9\\ 97.2\\ 99.8\\ 23.4\\ 99.8\\ 23.4\\ 99.8\\ 95.0\\ 97.2\\ 99.5\\ 90.1\\ 55.8\\ 99.1\\ 100.0\\ 99.6\\ 48.6\\ 99.1\\ 100.0\\ 99.6\\ 48.6\\ 99.1\\ 100.0\\ 99.6\\ 48.6\\ 99.1\\ 100.0\\ 99.5\\ 84.7\\ 100.0\\ 99.5\\ 84.7\\ 100.0\\ 99.5\\ 84.7\\ 100.0\\ 99.5\\ 84.7\\ 100.0\\ 99.5\\ 84.7\\ 100.0\\ 99.5\\ 84.7\\ 100.0\\ 99.5\\ 95.3\\ 99.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.3\\ 90.5\\ 35.5\\ 90.5\\ 35.5\\ 90.5\\ 35.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ 90.5\\ $	$\begin{array}{c} 3.327\\ 96.2\\ 91.9\\ 97.9\\ 99.3\\ 97.7\\ 87.8\\ 97.7\\ 100.0\\ 77.0\\ 91.7\\ 87.8\\ 84.5\\ 48.4.5\\ 48.4.5\\ 48.4.5\\ 48.4.5\\ 99.5\\ 99.5\\ 91.8\\ 99.5\\ 91.8\\ 99.5\\ 91.8\\ 99.5\\ 91.8\\ 99.5\\ 91.8\\ 95.0\\ 95.9\\ 96.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 9$	$\begin{array}{c} 2.362\\ 94.0\\ 87.5\\ 97.0\\ 98.6\\ 996.1\\ 996.2\\ 17.6\\ 997.6\\ 997.6\\ 89.3\\ 997.6\\ 89.3\\ 997.6\\ 89.2\\ 89.8\\ 82.6\\ 89.2\\ 99.2\\ 98.2\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6\\ 89.6$	$\begin{array}{c} 1.651\\ 90.6\\ 80.5\\ 97.6\\ 93.0\\ 94.8\\ 97.6\\ 93.0\\ 94.1\\ 92.8\\ 97.6\\ 98.8\\ 65.7\\ 72.3\\ 44.4\\ 98.2\\ 99.8\\ 87.1\\ 75.8\\ 89.5\\ 72.3\\ 44.4\\ 98.2\\ 97.1\\ 94.4\\ 98.2\\ 97.1\\ 89.6\\ 97.1\\ 88.5\\ 88.4\\ 47.0\\ 98.9\\ 90.0\\ 98.0\\ 90.0\\ 58.8\\ 47.0\\ 98.9\\ 90.0\\ 58.8\\ 88.8\\ 88.2\\ 92.9\\ 88.4\\ 88.2\\ 92.9\\ 88.4\\ 88.2\\ 92.9\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4\\ 88.4$	$\begin{array}{c} \text{Size}\\ \textbf{1.168}\\ \textbf{84.7}\\ \textbf{68.1}\\ \textbf{90.4}\\ \textbf{95.0}\\ \textbf{87.5}\\ \textbf{80.7}\\ \textbf{80.7}\\ \textbf{80.7}\\ \textbf{80.7}\\ \textbf{80.7}\\ \textbf{81.6}\\ \textbf{80.8}\\ \textbf{45.0}\\ \textbf{86.9}\\ \textbf{96.2}\\ \textbf{97.0}\\ \textbf{86.9}\\ \textbf{96.2}\\ \textbf{97.1}\\ \textbf{83.5}\\ \textbf{57.1}\\ \textbf{76.5}\\ \textbf{57.1}\\ \textbf{77.6}\\ \textbf{85.0}\\ \textbf{57.1}\\ \textbf{83.5}\\ \textbf{57.1}\\ \textbf{83.5}\\ \textbf{82.0}\\ \textbf{82.0}\\ \textbf{67.6}\\ \textbf{82.0}\\ 82$		$\begin{array}{c} 10, 589 \\ \hline 0, 589 \\ \hline 49, 1 \\ 22, 6 \\ 60, 8 \\ 75, 2 \\ 25, 8 \\ 37, 9 \\ 99, 6 \\ 27, 3 \\ 41, 37, 9 \\ 98, 6 \\ 27, 3 \\ 43, 7 \\ 43, 7 \\ 98, 6 \\ 27, 3 \\ 41, 37, 9 \\ 98, 6 \\ 27, 3 \\ 41, 37, 9 \\ 15, 8 \\ 30, 7 \\ 61, 3 \\ 21, 9 \\ 34, 9 \\ 61, 2 \\ 21, 9 \\ 34, 9 \\ 61, 2 \\ 35, 7 \\ 46, 2 \\ 55, 3 \\ 57, 3 \\ 35, 7 \\ 46, 2 \\ 55, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, 3 \\ 57, $	$\begin{array}{c} \text{im.}\\ \hline 0.417\\ \hline 0.417\\ \hline 12.5\\ 9.5\\ 26.9\\ 38.5\\ 26.9\\ 38.5\\ 20.6\\ 9.6\\ 9.6\\ 9.6\\ 9.6\\ 9.6\\ 9.6\\ 9.6\\ 9$	$\begin{array}{c} 0.295\\ \hline \\ 1.6\\ 5.9\\ 4.3\\ 8.6\\ 2.0\\ 2.0\\ 3.4\\ 40.0\\ 13.2\\ 40.0\\ 13.2\\ 40.0\\ 13.2\\ 11.5\\ 19.0\\ 14.9\\ 3.5\\ 8.5\\ 3.2\\ 4\\ 11.7\\ 5.3\\ 5.8\\ 3.5\\ 2.4\\ 11.7\\ 5.3\\ 7.0\\ 7.0\\ 7.0\\ 7.0\\ 14.4\\ 4.4\\ 3.5\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ $	$\begin{array}{c} 0.208 \\ \hline 0.3 \\ 3.3 \\ 1.5 \\ 5.4 \\ 1.1 \\ 0.9 \\ 1.4 \\ 5.1 \\ 1.4 \\ 2.6 \\ 1.2 \\ 2.1 \\ 1.4 \\ 2.8 \\ 1.2 \\ 2.1 \\ 1.4 \\ 2.8 \\ 1.2 \\ 2.1 \\ 1.4 \\ 2.8 \\ 1.2 \\ 2.1 \\ 1.4 \\ 2.8 \\ 1.2 \\ 2.1 \\ 1.4 \\ 2.8 \\ 1.2 \\ 1.4 \\ 2.8 \\ 1.2 \\ 1.4 \\ 1.4 \\ 2.8 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1$	$\begin{array}{c} 0.104 \\ \hline 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0$	$\begin{array}{c} 0.074\\ \hline 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	0.040	0.008	0.004	
1721/2 176 1781/2 1813/4 1823/4 1861/2†	100.0 93.5	97.9 100.0 73.8	97.0 99.4 94.6 96.5 100.0 71.5	97.6 97.6 93.0 86.5 98.7 69.7	95.5 95.7 91.3 80.4 97.1 69.2 02.4	93.8 90.7 100.0 87.9 73.0 94.7 68.8 80.8		82.0 70.0 99.8 67.2 49.6 83.6 ≈ 67.2 71.2	$ \begin{array}{r} 58.3 \\ 43.0 \\ 98.9 \\ 35.9 \\ 26.7 \\ 65.9 \\ 60.2 \\ 30.0 \\ \end{array} $	25.4 20.0 83.7 8.1 10.5 46.0 26.1	$ \begin{array}{r} 6.0 \\ 4.1 \\ 33.4 \\ 1.5 \\ 4.9 \\ 36.9 \\ 11.0 \\ 1.0 \\ \end{array} $	$0.8 \\ 0.8 \\ 7.0 \\ 2.0 \\ 32.7 \\ 2.5 \\ 2.5 \\ 2.5 \\ 1.5$	$\begin{array}{c} 0.0 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.1 \\ 29.6 \\ 0.1 \\ \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 29.0 \\ 0.0 \\ 0.0 \\ \end{array}$		101 100 100 100 100 100 101 100 100 100 100 100 100 101 100 100 100 100 100 100 100 101 100 100 100 100 100 100 100 101 100 100 100 100 100 100 100 101 100 100 100 100 100 100 100 101 100 100 100 100 100 100 100 101 100 100 100 100 100 100 100 101 100 100 100 100 100 100 100 101 100 100 100 100 100 100 100 101 100 100 100 100 100 100 100 101 100		
A 10 A	100.0	00.0	00.1	00.0	0 H . I	00.01	01.4	11.43	1	0.4	1.2 1	0.0	0.1	0.01				

.

ŧ

*See also Table 41. †100% finer than 50.8 mm.

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles	Large	Gravel	Med	lium Gra	ivel	Fine ((U.	Gravel S. Bur	Coarse eau of S	Sand oils Clas	Medium	n Sand	Fine	Sand	Fine Sand	8	ilt	Cl	ay
Cairo							Size	of open	ing in n	ım.								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0,040	0.008	0.004	0.001
	1	100.0		07 5	05.7	09.8	97 1	76.9	49.3	21.5	3.4	0.3	0.0					
195		100.0	100.0	97.0	98.5	97.1	94.4	89.6	75.1	47.3	21.2	5.5	0.1	0.1				
200	100.0	94.0	84.4	80.6	79.1	76.3	70.2	59.0	31.0	6.3	1.7	0.4	0.1	0.0				
205		100.0	99.1	97.2	95.1	91.8	85.3	72.7	36.1	7.1		0.3	0.1	0.0			~ ~ ~ ~ ~ ~ ~ ~ ~	
209	100.0	95.8	82.7	71.2	65.8	60.9	56.1 07 7	50.1 02 0	33.U 64 1	10.0	3.6	1.2	0.1	0.0	******			
21034		100.0		99.7	99.4	99.0	94.7	87.1	55.6	$\frac{10.0}{20.1}$	6.5	1.4	0.2	0.1				
21072 21914		100.0	00.0	00.0	00.0	100.0	99.9	99.7	98.6	74.3	20.9	3.7	0.1	0.0		an an 10 to 10 to 10		
22116	100.0	99.5	98.5	94.7	93.8	92.4	90.0	85.6	73.6	58.2	49.5	32.0	0.7	0.0				
225			100.0	99.6	99.3	98.8	97.7	95.2	91.3	54 1	12.9	0.9	0.1	0.0				
229	1700 0			- 65 0	<u>8</u> -6	89 1	99.7 80.5	76 4	61 1	20.9	4.4	1.0	0.1	0.0				
230	100.0	00.0	100.0	99.9	99.8	99.7	99.4	97.8	87.9	32.5	5.0	0.4	0.0					
236%			10010				100.0	99.9	99.2	75.7	15.1	2.1	0.1	0.0				
241			100.0	99.5	99.1	98.4	96.9	93.9	81.8	30.4	5.2	1.0	0.1	0.0	~~~~~			
243		100.0	98.4	97.6	97.2	96.3	94.2	89.0	69.0	94 7	5.8	1 0	0.0	0.0				
244			100.0	99.1	98.8	90.0	92.9	95.9	83.5	34.0	6.8	0.7	0.0					
247/2 2403/			100.0	00.0	00.1	100.0	99.9	99.8	99.2	56.8	19.0	3.6	0.2	0.0				
250 1/2						100.0	99.9	99.6	96.4	75.1	26.8	4.0	0.1	0.0				
251			100.0	99.5	98.7	96.9	93.0	85.7	70.4	44.8	20.6	5.0	0.1	0.0				
$251\frac{34}{4}$	100.0	53.0	47.3	44.0	42.0	39.7	36.3	31.5	23.8	12.0	9.0	0.2	0.0					
25214	~ ~ ~ ~ ~ ~ ~	100.0	97.5	95.1	95.1	90.2	83 6	73 2	43.0	11.9	$\frac{1}{2}.2$	0.3	0.0					
202 22		100.0	100.0	99.9	99.8	99.6	99.4	98.7	94.9	64.7	21.4	1.2	0.0					
254							100.0	99.9	98.9	77.2	30.1	2.3	0.0	0.0				
$254\frac{1}{8}$		100.0	99.0	97.4	96.1	93.5	87.6	76.9	52.5	28.9	16.7	2.6	0.1	0.0		· · · · · · · · · · ·		
$254\frac{1}{4}$	100.0	93.6	87.8	80.0	75.1	68.7	50.8	20.0	56 1	40 8	32.0	13 4	0.5	0.1				
254 1/2	100.0	93.0	91.5	03.6	89.5	81.2	66.0	42.5	14.9	3.9	2.6	0.7	0.0					
20494.A 95487B		100.0	99.0	97.6	96.7	94.9	91.6	85.4	68.6	46.3	25.3	4.3	0.1	0.0				
255	100.0	96.4	94.4	93.7	93.1	92.1	88.9	79.9	51.1	17.4	6.2	1.0	0.1	0.0				
$255\frac{1}{2}$		100.0	99.0	98.4	98.1	97.2	94.5	87.3	63.8	28.3	5.8	1.3	0.0	0.0				
$255\frac{3}{4}A$	100.0		100.0	99.7	99.5	99.1	98.3	90.0	24 2	6.5	1.5	0.2	0.0	0.0				
255% B	100.0	90.5	92.5	93 4	02.9	91.8	88.9	82.9	64.9	31.2	10.2	1.9	1 0.0					
20074 25614	100.0	00.0	100.0	99.4	99.0	97.8	87.1	57.2	26.9	13.7	8.4	2.0	0.0					
258		100.0	98.9	98.8	98.7	98.6	98.2	94.7	67.8	27.8	10.3	3.0	0.1	0.1	~ ~ ~ ~ ~ ~			
259		100.0	97.5	96.0	94.6	92.5	88.9	81.8	67.8	36.9	11.4	4.5	2.2	2.1				
260¼	1			100.0	99.4	1 98.4	95.9	1 88.9	+ 63.9	29.7	11.1	1 0.4	. 0.1	. 0.0		*****		

*See also Table 41.

......

130

a

5

\$

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles Below	Large	Gravel	Mee	lium Gr	avel	Fine (U	Gravel J. S. Bu	Coarse reau of	e Sand Soils Cla	Mediu	m Sand on)	Fine	Sand	Very Fine Sand	8	silt	C	lay
Cairo							Size	of open	ing in n	ım.								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
22424		100.0	00.4	00.0	00.0	00.4	0.7 0	00.0	01.0		01.0		0.5	0.1				-
261 1/2	No. 44, 46, 16, 16, 16, 16,	100.0	99.4	98.8	98.6	98.4	97.9	96.8	91.3	59.7	31.8	6.2	0.5	0.1	****			
200 /4	~ ~ ~ ~ ~ ~ ~ ~	100.0	100.0	07.1	06.5	05.0	01.7	81.6	62 9	27 6	10.0	5.0	0.0	0.0			*****	
204 /2	100 0	02.7	90.0	84.0	90.0 92.0	81 7	70 6	74 7	55 4	01.0	19.0	1.0	0.1	0.0				
26612	100.0	100.0	07.4	04.7	02.8	80.0	89.4	71.9	45 7	16 1	5 7	0.3	0.1	0.0				
200 22	100 0	04 8	01 5	80.4	87.8	85 5	81 8	74.8	58 6	49.9	28 4	22.7	32.4	20 0				
26012	100.0	34.0	01.0	100.0	00.0	00.0	00.3	07 7	00.5	65 2	98.9	9.7	0.1	5.0	10 10 10 14 10 PE 10			
20972			100 0	00.8	00.7	00.3	07.0	02 1	79.1	22 6	19.9	11	0.1	0.0				
27022	100 0	08.3	07.7	06.2	05.5	03.7	90.0	89.7	60.0	20.0	6 6	0.5	0.0			******	~ ~ ~ ~ ~ ~ ~ ~ ~	
27172	100.0	100.0	00.8	90.1	00.0	08.8	08.3	07 3	04.8	78 9	26.1	7.0	0.1	0.0		****		
2722	100 0	07.7	04 8	03.8	03 5	99.0	01.8	87 0	67.9	17 5	4 5	6.4	0.1	0.0		100 Tel. 20, 20 and 20 and 20		
272	100.0	ər.1	04.0	00.0	00.0	100.0	00.8	00.2	06.5	00.0	71.0	42.6	22.8	22 0				
470 0724		100.0	08 8	05.2	09.1	100.0	89.7	75 5	57.9	25 2	11.0	42.0	22.0	22.0		10 Ja 11 Ja 14 Ja		14. 10, 17. 10. 10. 10. au
210A 0793/	100 0	100.0	90.6	84.5	20.0	70.2	75 4	60.0	59.5	49.6	44 7	42.2	49.1	49.0	10 10 at 10 10 10 40	****		
273%	100.0	90.4	100.0	04.0	00.6	19.3	10.4	09.9	00.0	48.0	97.0	\$0.0	4.2.1	42.0		10 per re autor au ra au		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211/2		100-0-	100.0	99.7	05.0	99.2	01 8	90.2	45.0	04.4	27.2	0.7	0.1	0.1		- 10 10 10 10 10 10		
280%		100.0	07.6	91.1	90.0	90.1	81.8	00.0	40.2	21.4	9.0	1.1	0.0	0.1				
281 /2		100.0	91.0	99.0	094.0	92.9	08.0	04.9	69.0	22.1	1.5	0.0	0.1	0.0		10 m m m m m m m		
283 1/2		100.0	99.8	99.4	98.9	98.1	90.9	92.2	02.7	27.9	8.4	3.0	0.1	0.0		~~~~~~~~~~		******
286 %		100 0	100.0	99.1	98.3	90.8	91.5	04.0	11.1	3.9	0.8	0.4	0.0			10 AF 17 10 10 m 14		
287 1/4		100.0	99.6	99.5	99.5	99.4	99.1	97.7	81.3	33.8	7.4	0.8	0.1	0.0				
$289\frac{1}{4}$			100.0	99.6	99.5	99.2	98.4	95.8	83.1	39.5	8.5	2.3	0.0			11 m // n m m m		
$292\frac{1}{2}$			100.0	99.8	99.2	97.3	94.1	87.2	55.6	15.8	4.0	1.0	0.1	0.0		100 00 17 77 55 Av 44		
293†	83.3	32.7	28.6	27.1	26.7	26.3	25.5	24.2	18.5	8.6	3.0	1.3	0.1	0.0		10 10 10 10 10 at 10 10		
293 1/4	100.0	92.7	88.7	81.7	78.9	75.4	71.0	63.9	42.6	14.6	3.8	0.6	0.1	0.0				
296			100.0	99.8	99.6	99.0	96.9	91.7	75.9	56.4	42.8	25.1	0.3	0.1				
$298\frac{1}{2}$		100.0	98.9	97.9	97.4	96.1	93.1	85.8	65.8	31.5	9.0	2.7	0.1	0.0				
300		* * * * * * * *	100.0	99.5	98.4	95.7	89.6	75.0	37.6	6.1	1.1	0.4	0.1	0.0				
$300\frac{3}{4}$		100.0	98.7	97.0	96.0	94.5	90.9	83.2	59.6	21.2	2.6	0.3	0.1	0.0				
$301\frac{1}{2}$		100.0	97.5	95.8	94.6	92.5	88.2	80.1	59.0	29.6	9.5	3.4	0.3	0.1				
$302\frac{3}{4}$			100.0	99.8	99.7	99.5	99.2	97.6	82.9	31.0	7.7	1.0	0.1	0.0				
$303\frac{1}{4}$			100.0	99.8	99.8	99.8	99.7	99.5	97.1	76.3	17.6	1.5	0.1	0.0				
$303\frac{1}{2}$				100.0	99.9	99.9	99.8	99.5	97.7	89.0	29.8	3.7	0.1	0.0		10 10 11 11 11 11 11 11		
303 5/8	100.0	99.0	97.9	96.6	95.9	94.7	92.1	85.5	57.3	14.7	3.7	0.3	0.0					
304					100.0	99.9	99.9	99.8	99.6	99.2	98.6	58.2	1.0	0.1				
30634						100.0	99.9	98.5	71.4	7.2	2.7	1.5	0.1	0.0				
310		100.0	99.3	99.0	98.9	98.9	98.7	98.2	94.7	88.9	63.6	14.1	0.1	0.1				
31034		100.0	97.2	94.9	93.7	91.9	89.0	82.6	60.5	23.7	2.7	0.2	0.0	******				
$313\frac{3}{4}$			100.0	99.8	99.7	99.3	98.6	96.6	86.6	56.3	20.4	3.8	0.1	0.0				
31414					100.0	99.9	99.8	99.7	98.9	85.0	28.8	3.5	0.1	0.0				

8

è

*See also Table 41. †100% finer than 50.8 mm.

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles	Large	Gravel	Med	ium Gra	vel	Fine (U	Fravel . S. Bur	Coarse eau of S	Sand oils Clar	Medium ssification	n Sand	Fine	Sand	Very Fine Sand	Si	lt	CI	ay
Cairo	and a fight and a summarian shares						Size	of openi	ng in m	ım.								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
$\begin{array}{c} 31614\\ 31712\\ 32112\\ 32412\\ 32912\\ 330\\ 331\\ 332\\ 331\\ 332\\ 337\\ 33912\\ 3337\\ 33912\\ 3337\\ 34234\\ 344\\ 344\\ 344\\ 344\\ 349\\ 350\\ 351\\ 35212\\ 4\\ 35212\\ 355\\ 356\\ 35712\\ 352\\ 356\\ 35712\\ 352\\ 356\\ 35712\\ 352\\ 356\\ 35712\\ 352\\ 356\\ 35712\\ 3723\\ 4\end{array}$	38.10 100.0 100.0 100.0 100.0	13.33 100.0 100.0 100.0 100.0 85.1 100.0 100.0 85.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.3 100.0 94.9 100.0 100.0 00.0	$\begin{array}{c} 6.680\\ \hline 98.8\\ 98.7\\ 100.0\\ 99.4\\ 53.4\\ \hline 100.0\\ 100.0\\ 99.3\\ 100.0\\ 100.0\\ 100.0\\ \hline 100.0\\ 100.0\\ \hline 100.0\\ 51.9\\ \hline 100.0\\ \hline 100.0\\ \hline 97.7\\ 91.3\\ 99.0\\ 85.1\\ 100.0\\ \hline 99.8\\ 100.0\\ \hline 97.8\\ 92.8\\ \hline 97.8\\ \hline 97.8\\ 92.8\\ \hline 97.8\\ \hline 9$	$\begin{array}{c} 3.327\\ \hline 98.4\\ 98.4\\ 99.6\\ 97.2\\ 34.2\\ \hline 100.0\\ 99.4\\ 99.4\\ 99.4\\ 99.4\\ 99.4\\ 99.4\\ 99.4\\ 99.4\\ 99.4\\ 99.4\\ 99.4\\ 99.4\\ 100.0\\ 100.0\\ 89.7\\ 99.2\\ 37.2\\ 100.0\\ 98.6\\ \hline 99.3\\ 96.6\\ 85.1\\ 98.9\\ 72.9\\ 99.6\\ \hline 99.7\\ 99.2\\ 100.0\\ 99.7\\ 99.2\\ 100.0\\ 97.4\\ 97.4\\$	$\begin{array}{c} 2.362 \\ \hline \\ 98.3 \\ 96.4 \\ 96.4 \\ 28.1 \\ 100.0 \\ 99.9 \\ 99.9 \\ 99.9 \\ 99.8 \\ 493.8 \\ 99.8 \\ 99.8 \\ 99.8 \\ 99.9 \\ 99.9 \\ 99.9 \\ 99.9 \\ 99.9 \\ 99.9 \\ 99.9 \\ 99.1 \\ 33.7 \\ 99.9 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.1 \\ 99.2 \\ 99.3 \\ 99.7 \\ 98.9 \\ 99.9 \\ 99.9 \\ 97.2 \\ 91.4 \\ 100 \\ 10$	$\begin{array}{c} 1.651\\ \\ 98.2\\ 98.0\\ 98.8\\ 99.5\\ 22.8\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.5\\ 99.5\\ 99.5\\ 99.9\\ 99.5\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.5\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 98.7\\ 95.4\\ 79.8\\ 98.7\\ 98.8\\ 100.0\\ 99.6\\ 98.8\\ 100.0\\ 99.6\\ 98.4\\ 99.9\\ 99.0\\ 99.9\\ 99.0\\ 90.0\\ 99.0\\ 90.0\\ 99.0\\ 90.0\\ 99.0\\ 90.0\\ $	$\begin{array}{c} 1.168\\ \hline \\ 97.7\\ 97.5\\ 97.3\\ 90.1\\ 18.4\\ 99.7\\ 99.7\\ 99.7\\ 99.7\\ 99.7\\ 99.7\\ 99.7\\ 99.4\\ 99.8\\ 99.8\\ 99.8\\ 99.8\\ 99.8\\ 99.8\\ 99.5\\ 97.7\\ 99.5\\ 97.5\\ 99.5\\ $	$\begin{array}{c} 0.833\\ \hline 93.8\\ 96.2\\ 91.7\\ 91.7\\ 91.7\\ 99.3\\ 99.8\\ 99.9\\ 99.3\\ 99.3\\ 99.3\\ 99.4\\ 98.9\\ 99.7\\ 99.4\\ 99.5\\ 99.7\\ 99.4\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.3\\ 82.6\\ 95.5\\ 88.4\\ 95.5\\ 99.4\\ 88.4\\ 95.5\\ 99.4\\ 95.5\\ 88.4\\ 99.5\\ 99.4\\ 95.5\\ 99.4\\ 95.5\\ 99.4\\ 95.5\\ 99.4\\ 95.5\\ 99.4\\ 95.5\\ 99.4\\ 95.5\\ 99.4\\ 95.5\\ 99.4\\ 95.5\\ 99.5\\ 99.5\\ 88.4\\ 99.5\\ 99.4\\ 95.5\\ 99.4\\ 99.5\\ 99$	$\begin{array}{c} 0.589\\ \hline\\ 60.3\\ 91.1\\ 64.9\\ 62.2\\ 100.4\\ 63.4\\ 91.2\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 970.9\\ 84.6\\ 43.3\\ 88.4\\ 45.5\\ 95.5\\ 37.2\\ 79.2\\ 97.5\\ 81.4\\ 98.3\\ 900.1\\ 77.3\\ 990.1\\ 970.1\\ 98.3\\ 900.1\\ 77.5\\ 970.8\\ 98.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 970.3\\ 900.1\\ 980.3\\ 900.1\\ 970.3\\ 980.3\\ 900.1\\ 980.3\\ 900.1\\ 970.3\\ 980.3\\ 900.1\\ 980.3\\ 900.1\\ 980.3\\ 900.1\\ 980.3\\ 980.3\\ 900.1\\ 980.3$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.295\\ \hline\\ 4.0\\ 23.3\\ 10.1\\ 15.8\\ 1.7\\ 1.3\\ 3.2\\ 50.9\\ 25.2\\ 1.0\\ 87.5\\ 45.2\\ 44.8\\ 88.0\\ 111.6\\ 45.0\\ 11.6\\ 45.0\\ 11.1\\ 3.4\\ 57.6\\ 16.4\\ 66.2\\ 24.1\\ 20.6\\ 64.3\\ 36.6\\ 26.2\\ 24.1\\ 20.6\\ 84.3\\ 36.6\\ 26.2\\ 26.2\\ 26.3\\ 36.6\\ 26.2\\ 26.2\\ 26.3\\ 36.6\\ 26.2\\ 26.2\\ 26.3\\ 36.6\\ 26.2\\ 26.2\\ 26.3\\ 36.6\\ 26.2\\ 26.2\\ 26.3\\ 36.6\\ 26.2\\ $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.074\\ 0.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$				
37634 37812 381 382 39012 39114 39114		100.0 100.0 100.0	98.5 99.1 99.6	$ \begin{array}{r} 89.5\\ 100.0\\ 95.1\\ \hline 99.3\\ 100.0\\ \end{array} $	83.6 99.9 92.3 99.2 99.9 100.0	$ \begin{array}{c ccccc} 76.6 \\ 99.9 \\ 89.5 \\ 100.0 \\ 99.0 \\ 99.9 \\ 99.9 \\ 99.9 \\ 99.9 \\ \end{array} $	69.4 99.8 86.7 99.9 98.8 99.8 99.8	$\begin{array}{c c} 63.4\\ 99.4\\ 81.7\\ 99.6\\ 98.2\\ 99.7\\ 99.6\end{array}$	$\begin{array}{c c} 55.6\\ 98.4\\ 64.9\\ 98.1\\ 95.5\\ 98.8\\ 98.1\end{array}$	42.6 95.0 37.3 90.9 90.7 92.4 91.8	$\begin{array}{c c} 26.9 \\ 60.9 \\ 16.8 \\ 71.7 \\ 86.5 \\ 78.4 \\ 75.5 \end{array}$	$\begin{array}{c c} 8.4 \\ 21.0 \\ 5.6 \\ 35.9 \\ 55.8 \\ 52.4 \\ 28.7 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} 0.7 \\ 0.2 \\ 2.1 \\ 0.5 \\ 0.1 \\ 0.2 \\ 3.3 \\ \end{array} $				0 40 40 50 </td
394	100.0	98.7	94.2	80.1	71.3	61.2	52.6	44.9	29.7	15.0	11.4	9.7	4.1	1.4	1	1		

*See also Table 41.

2 3.

132

s - j

TABLE	39—Continued.	
-------	---------------	--

*

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles Below	Large	Gravel	Med	dium Gra	ivel	Fine (Gravel J. S. Bu	Coarse reau of §	Sand Soils Cla	Mediur ssificatio	n Sand n)	Fine	Sand	Very Fine Sand	Si	lt	С	lay
Cairo							Size	of openi	ng in m	m.								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
$\begin{array}{c} 395\\ 396\\ 3964\\ 397\\ 397\\ 4\\ 397\\ 397\\ 4\\ 397\\ 2\\ 397\\ 2\\ 398\\ 4\\ 398\\ 4\\ 398\\ 4\\ 398\\ 4\\ 398\\ 4\\ 398\\ 4\\ 401\\ 4\\ 402\\ 403\\ 404\\ 402\\ 403\\ 404\\ 402\\ 403\\ 404\\ 404\\ 404\\ 404\\ 404\\ 404\\ 402\\ 411\\ 2\\ 413\\ 422\\ 428\\ 428\\ 428\\ 428\\ 428\\ 428\\ 428$	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	977.4 27.2 100.0 100.0 40.9 76.1 20.2 98.7 71.1 81.0 100.0 100.0 88.6 	$\begin{array}{c} 100.0\\ 92.3\\ 26.2\\ 100.0\\ 98.5\\ 99.4\\ 100.0\\ 100.0\\ 29.6\\ 52.4\\ 12.6\\ 96.4\\ 12.6\\ 96.4\\ 12.6\\ 96.4\\ 12.6\\ 96.4\\ 12.6\\ 96.4\\ 12.6\\ 96.5\\ 100.0\\ 75.7\\ 100.0\\ 99.5\\ 100.0\\ 75.7\\ 100.0\\ 99.5\\ 100.0\\ 99.5\\ 100.0\\ 99.5\\ 100.0\\ 99.7\\ 23.9\\ 99.7\\ \end{array}$	$\begin{array}{c} 99.9\\ 100.0\\ 86.1\\ 25.6\\ 99.8\\ -98.0\\ 98.7\\ -98.0\\ 99.8\\ 100.0\\ 99.5\\ 24.3\\ 33.9\\ 99.9\\ 8.7\\ 94.9\\\\ 99.9\\ 53.6\\ 68.0\\ 96.2\\ 99.7\\\\ 99.9\\ 53.6\\\\ 99.9\\ 53.6\\\\ 99.9\\ 53.6\\\\ 99.9\\\\ 99.9\\\\ 99.9\\\\ 99.9\\\\ 99.9\\\\ 99.9\\\\ 99.9\\\\ 99.9\\\\ 99.9\\\\ 99.9\\\\ 99.3\\ 99.4\\ 12.6\\ 97.5\\$	$\begin{array}{c} 99.6\\ 99.9\\ 99.9\\ 82.0\\ 25.4\\ 99.6\\ 97.1\\ 98.5\\ 100.0\\ 99.9\\ 98.9\\ 722.9\\ 22.9\\ 22.9\\ 22.9\\ 27.5\\ 7.3\\ 73.7\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.8\\ 99.0\\ 99.3\\ 9.1\\ 99.8\\ 99.0\\ 99.3\\ 9.1\\ 100.0\\ \end{array}$	$\begin{array}{c} 99.2\\ 99.6\\ 76.7\\ 25.3\\ 99.4\\ 96.3\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.7\\ 99.9\\ 99.7\\ 21.8\\ 22.3\\ 6.2\\ 92.2\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.8\\ 50.3\\ 51.4\\ 99.9\\ 99.9\\ 99.9\\ 99.8\\ 50.3\\ 51.4\\ 99.9\\ 99.9\\ 99.9\\ 99.8\\ 10\\ 70.9\\ 98.7\\ 99.1\\ 7.0\\ 99.9\\ 99.$	$\begin{array}{c} 98.2\\ 98.8\\ 99.7\\ 25.2\\ 99.2\\ 100.0\\ 95.3\\ 97.9\\ 99.7\\ 99.7\\ 99.7\\ 99.8\\ 96.2\\ 20.9\\ 91.8\\ 35.4\\ 89.7\\ 99.8\\ 99.9\\ 98.8\\ 99.9\\ 98.8\\ 99.9\\ 98.8\\ 99.9\\ 98.8\\ 99.9\\ 98.8\\ 99.9\\ 99.8\\ 99.9\\ 99.8\\ 99.9\\ 99.8\\ 99.9\\ 99.8\\ 99.9\\ 99.8\\ 99.9\\ 99.9\\ 99.8\\ 99.9\\ 99.9\\ 90.8\\ 99.9\\ 99.9\\ 90.8\\ 99.9\\ 90.8\\ 99.9\\ 90.8$	$\begin{array}{c} 95.5\\ 95.6\\ 58.0\\ 25.0\\ 25.0\\ 99.2\\ 99.2\\ 99.5\\ 99.2\\ 99.5\\ 99.7\\ 99.5\\ 20.1\\ 14.5\\ 85.4\\ 99.8\\ 99.7\\ 99.6\\ 47.6\\ 99.7\\ 99.6\\ 47.6\\ 99.7\\ 99.6\\ 47.6\\ 99.7\\ 99.6\\ 47.6\\ 99.7\\ 99.6\\ 47.6\\ 99.7\\ 99.6\\ 47.6\\ 99.5\\ 99.7\\ 99.6\\ 80.2\\ 99.5\\ 97.3\\ 97.3\\ 97.3\\ 97.3\\ 97.3\\ 97.5\\ 99.2\\ 98.7\\ 5.0\\ 80.2\\ 99.8\\ 99.2\\ 99.8\\ 7\\ 5.0\\ 99.8\\ 99.8\\ 99.8\\ 99.7\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 99.8\\ 90.2\\ 90.8\\ 90.8\\ 90.8\\ 90.2\\ 90.8$	$\begin{array}{c} 81.4\\ 79.4\\ 79.4\\ 32.1\\ 24.1\\ 99.6\\ 85.8\\ 81.2\\ 996.2\\ 94.8\\ 99.3\\ 83.6\\ 10.2\\ 3.0\\ 71.7\\ 99.5\\ 99.3\\ 43.2\\ 23.0\\ 70.8\\ 99.3\\ 43.2\\ 23.0\\ 70.8\\ 99.3\\ 43.2\\ 23.0\\ 70.8\\ 99.3\\ 43.2\\ 23.0\\ 70.8\\ 99.3\\ 45.7\\ 95.3\\ 86.1\\ 97.4\\ 3.8\\ 50.5\\ 99.4\\ \end{array}$	$\begin{array}{c} 35.6\\ 35.2\\ 10.2\\ 18.6\\ 96.6\\ 91.6\\ 91.6\\ 91.6\\ 91.6\\ 91.6\\ 91.6\\ 91.6\\ 91.6\\ 91.6\\ 92.2\\ 97.6\\ 13.8\\ 1.2\\ 37.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 97.6\\ 18.1\\ 95.9\\ 19.2\\ 18.2\\ $	$\begin{array}{c} 10.2\\ 11.0\\ 3.6\\ 5.7\\ 94.2\\ 51.7\\ 94.2\\ 3.7\\ 70.4\\ 9.8\\ 86.1\\ 9.0\\ 2.0\\ 4\\ 5.5\\ 35.8\\ 80.4\\ 69.2\\ 5.4\\ 2.1\\ 126.0\\ 7.4\\ 4\\ 29.4\\ 15.7\\ 48.9\\ 8.0\\ 11.3\\ 40.5\\ 0.3\\ 3.8\\ 9\\ 8.0\\ \end{array}$	$\begin{array}{c} 7.1\\ 7.6\\ 1.9\\ 5.76.7\\ 11.2\\ 39.0\\ 43.8\\ 1.2\\ 39.0\\ 43.7\\ 5.6\\ 0.7\\ 10.6\\ 29.0\\ 100.0\\ 100.0\\ 29.0\\ 100.0\\ 100.0\\ 7.7\\ 2.7.0\\ 100.0\\ 7.9\\ 9.8\\ 1.0\\ 0.2\\ 100.0\\ 7.9\\ 9.8\\ 1.0\\ 0.2\\ 100.0\\ 2.9\\ 9.8\\ 1.0\\ 0.2\\ 100.0\\ 2.9\\ 9.8\\ 1.0\\ 0.2\\ 0.2\\ 2.9\\ 0.1\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	$\begin{array}{c} 2.7\\ 3.9\\ 0.7\\ 0.0\\ 0.1\\ 0.1\\ 10.1\\ 0.1\\ 19.1\\ 19.1\\ 19.1\\ 19.1\\ 19.1\\ 0.6\\ 0.5\\ 2.1.1\\ 10.0\\ 0.5\\ 2.1.1\\ 0.0\\ 0.5\\ 2.1.1\\ 0.0\\ 0.5\\ 2.1.1\\ 0.0\\ 0.5\\ 0.0\\ 0.1\\ 0.2\\ 0.1\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.1\\ 0.2\\ 0.1\\ 0.1\\ 0.1\\ 0.2\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1$	$\begin{array}{c} 0.9\\ 1.5\\ 0.2\\ \end{array}\\ \hline\\ 0.1\\ 0.0\\ 0.0\\ 0.1\\ 13.8\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.3\\ 0.4\\ \end{array}$	85.4 74.2 64.3	65.0 50.2 36.1		
433B 433½ 435½	100.0	87.8 100.0	$ \begin{array}{r} 86.2 \\ 94.8 \\ 100.0 \end{array} $		84.8 87.6 99.9	83.6 85.5 99.8		$79.1 \\ 77.6 \\ 99.2$		$31.3 \\ 39.8 \\ 82.4$	$\frac{4.8}{12.5}$ 38.6	$ \begin{array}{c} 0.4 \\ 2.1 \\ 12.1 \end{array} $	$ \begin{array}{c} 0.1 \\ 0.1 \\ 7.2 \end{array} $	0.1 0.1 7.1			100 10, 10 20 20 20 20 10 10	

*See also Table 41.

8

ø

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Miles	Large	Gravel	Med	lium Gra	vel	Fine (U	Gravel J. S. Bu	Coarse reau of i	Sand Soils Cla	Mediur ssificatio	n Sand n)	Fine	Sand	Very Fine Sand	Si	ilt	CI	ay
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cairo							Size	of open	ing in m	m.								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		38 10	13 33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*****	1 00.10	10100	01000		1													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	436%						100.0	99.9	99.9	99.8	96.4	72.1	38.7	1.1	0.1	~ ~ ~ ~ ~ ~ ~			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4381%			100.0	99.4	99.3	99.1	98.9	98.6	96.8	85.1	48.8	22.2	17.9	16 4	10. 10 p. 10. 10 10 10			A. 10 10 10 10 10 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$439\frac{1}{2}$			100.0	99.9	99.9	99.8	99.5	99.0	90.8	84.4	02.7	40.4	24.0	20.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	441	100.0	97.8	96.0	95:6	95.5	95.4	95.1	94.3	91.1	80.4	10.0	40.4	1.7	0.6		1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$441\frac{1}{2}$			100.0	99.7	99.0	97.8	96.0	92.4	78.7	38.3	10.0	3.4	1.1	0.0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$442\frac{1}{2}$					100.0	99.9	99.7	99.6	98.3	04.0	99.1	1 0.4		0.1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$443\frac{1}{2}$					100.0	99.9	99.9	99.8	99.7	90.4	00.1	7.0	0.1		A			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$447\frac{1}{2}$	100.0	94.3	90.3	87.2	82.8	75.5	65.3	32.5	30.0	12.0	49.0	11 0	1 0.1 0 0	0.1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	449			100.0	99.3	99.2	98.9	98.0	96.0	89.5	73.1	42.0	11.0	100.0	94.8	90.8	70.8	62.4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$451\frac{1}{2}$	~ ~ ~ ~ ~ ~ ~ ~								00.7	41 0	2 1	0.7	0.4	0.2	00.0		0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$452\frac{1}{2}$				100.0	99.9	99.9	99.8	99.7	96.7	41.0	0.1	100.0	99.3	93 4	90.1	70.5	52.1	
	454			leesses-			07 -		10.9	10 E	1 A - Q -	1 9	100.0	őĩ	01	00.1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$454\frac{1}{2}$	100.0	85.6	56.0	37.6	32.3	27.5	23.0	19.0	12.0	59 9	6.0	0.1	l n î	ŏî				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$455\frac{1}{2}$				100.0	99.9	99.9	99.1	99.0	95.0	60.2	93.0	27	0.1	0 1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$456\frac{1}{2}$			100.0	99.6	99.4	99.3	99.1	20.0	1 80.4	05.5	5.8	0 4	ŏ î	0 1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$457\frac{1}{2}$	******	100.0	98.7	96.7	95.2	92.8	81.2	40.7	96.7	77	1 7	0.5	l ő î	0 1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	459	100.0	56.2	50.4	49.6	49.0	48.1	40.8	40.7	20.1	10.2	201	18.8	2 5	ň ŝ				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	459¼	~~~~~~~	100.0	99.4	96.4	95.0	92.9	89.2	02.0	50.4	22 0	91 8	4 4	0.3	l 0.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$460\frac{1}{2}$	www.com.com.com.com.com.com		100.0	99.2	97.1	94.3	88.1	11.1	04.0	20.1	13.0	37	0.3	0.1		0442402		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$461\frac{1}{2}$				100.0	99.9	99.9	99.8	49 5	97.9	12 2	5 1	0.0	0 1	i õ.õ				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	462	100.0	76.1	62.6	55.9	53.0	50.6	48.5	40.0	75 6	97.5	3.2	0.5		0.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	464			100.0	97.7	97.0	90.0	94.9	07.8	10.0	74 0	28.6	9 1	0.2	l ő î				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4641/4	and and the last 100 the		100.0	99.7	99.5	99.2	90.1	09.8	86.0	86.0	29.4	44	0 1	0.1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$465\frac{1}{2}$		100.0	99.0	90.9	96.2	100.0	94,4	00.0	00.0	05.0	53 9	5.8	0 1	0.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	466						100.0	99.9	09.9	07 7	03 4	66.8	17 9	0 î	0.1	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$466\frac{1}{2}$			100.0	99.0	99.0	00.4	04 5	80.9	73.9	51 4	41 6	29.2	$\tilde{0}.2$	0.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	468			100.0	99.1	90.0	90.9	64.0	59 4	12.6	30 3	38 7	37 2	1.2	0.2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$469\frac{1}{2}$		1-700-0-	100.0	94.2	80.3	10.9	05.4	04 6	\$1.9	13 0	2.2	1.6	0.1	$\tilde{0.1}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4701/2		100.0	98.0	90.0	00.0	04 7	09.7	60.5	18 7	3.0	0.3	0.2	0.1	0.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4721/2			100.0	100 0	90.0	00.8	00.5	07.4	84.2	25.3	3 6	0.5	0.1	0.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	474		-		100.0	100.0	00.0	00.0	00.8	04.9	42 9	7 1	0.6	0.1	0.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	475				00 8	100.0	99.9	99.9	80.0	88 6	73 7	14 4	0.7	0.1	0.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	475%	100.0	90.5	89.8	89.0	09.0	09.2	00.7	00.6	08.8	74 5	91	04	0.1	0.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47614			100.0	00.0	09.9	07 0	07.6	96.0	85.4	71 3	55.5	11.7	0.1	0.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	477 1/2		100 0	100.0	08.2	98.0	07 0	07.6	98.9	90.4	59.8	17.3	5.9	0.2	0.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	479%		0.001	98.4	90.1	1 90.0	100.0	000	1 00.0	99 7	97.8	65.1	15.3	2.7	0.6				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	481	100.0	70.1	- 29 0	1- 10 0	44 8	43 5	49.3	39.8	31.8	19.5	7.3	1.7	0.1	0.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	481 14	100.0	1 70.1	1 20.0	72 1	79 9	71 0	88.6	64 4	53.4	31.3	21.1	$1 - \bar{2}.6$	1 0.2	0.1		Junerun		
	481%	100.0	10.1	1 10.0	1 10.1	1 12.0	100.0	1 99 9	99.9	99.8	98.1	57.8	5.2	0.2	1 0.1	1	1		

э

2

*See also Table 41.

-¥

ż

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles Below	Large Gra	ivel	Me	dium Gr	avel	Fine (U	Gravel J. S. Bu	Coarse reau of \$	Sand Soils Cla	Mediur ssificatio	n Sand m)	Fine	Sand	Very Fine Sand	s	ilt	CI	lay
Cairo							Size	of openi	ng in m	m.								
	38.10 13	3.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
483 484 484 <u>14</u> 484 <u>14</u> 485 <u>14</u> 4		30.2 00.0	$13.1 \\ 90.2 \\ 100.0$	0.7 78.5 99.9	100.0 0.2 67.0 99.9	100.0 99.9 0.1 52.5 99.2	$99.9 \\ 99.9 \\ 0.1 \\ 36.6 \\ 98.2$	$99.6 \\ 99.5 \\ 0.0 \\ 21.6 \\ 94.5 \end{cases}$	$95.9 \\ 94.9 \\ 8.1 \\ 73.1$		$ \begin{array}{c} 23.4 \\ 16.0 \\ \hline 0.8 \\ 3.6 \end{array} $	$ \begin{array}{c c} 2.9 \\ 4.4 \\ 0.2 \\ 0.6 \\ \end{array} $	$0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1$	0.1 0.1 0.1			MI MI<	
48514B 486 487 48812A 48812B 489 48914		35.9	$\begin{array}{c} 41.8\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0 \end{array}$	26.6 99.6 97.7 99.9 99.3	20.6 99.5 97.6 	15.799.497.1100.099.199.0	$\begin{array}{c} 11.7\\ 99.2\\ 95.8\\ 99.9\\ 97.3\\ 98.4 \end{array}$	8.4 97.9 89.9 99.8 93.2 97.3	5.184.963.699.771.792.3	3,1 38.6 30.5 97.5 26.3 67.3	$ \begin{array}{r} 1.3\\14.6\\21.7\\50.2\\5.5\\23.0\end{array} $	$ \begin{array}{c} 0.1 \\ 2.2 \\ 17.8 \\ 7.3 \\ 0.9 \\ 2.9 \\ 100 \\ 0 \end{array} $	$\begin{array}{c} 0.0 \\ 0.1 \\ 1.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 92 \\ 0 \end{array}$	0.1 0.2 0.1 0.1 0.1 80.6	59 2	34 0		
$\begin{array}{c} 489\frac{1}{2} \\ 489\frac{3}{4} \\ 490 \\ 490\frac{1}{2}A \\ 490\frac{1}{2}B \\ 491 \end{array}$	100.0 9 100.0 9	92.5 98.4	100.0 89.5 97.0 100.0	99.7 88.2 95.3 99.8	99.6 87.2 	99.6 86.4 100.0 100.0 92.9 99.6	99.5 85.2 99.9 99.9 90.8 99.3	99.4 83.2 99.8 99.9 88.0 99.0	98.7 72.3 99.7 99.3 80.9 98.3	93.7 36.5 98.0 79.3 47.4 93.2	56.0 7.0 66.3 36.6 10.4 43.8	$4.7 \\ 0.4 \\ 7.3 \\ 3.5 \\ 0.5 \\ 3.9$	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.1 \end{array}$				
$491\frac{1}{4}$ $492\frac{1}{2}$ $493\frac{1}{2}$ 494 $494\frac{1}{2}$ 496	100.0 100.0 10	80.8 72.9 00.0	$ \begin{array}{r} 65.4 \\ 56.6 \\ 96.4 \end{array} $	$\begin{array}{r} 99.9 \\ 100.0 \\ 51.1 \\ 50.8 \\ 96.1 \\ 100.0 \end{array}$	99.8 99.8 44.3 48.1 96.1 99.9	99.8 99.2 38.4 45.3 96.0 99.9	99.7 98.3 32.8 42.6 95.9 99.7	99.7 97.0 26.1 38.3 95.5 99.6	$99.4 \\ 93.8 \\ 14.2 \\ 24.8 \\ 91.1 \\ 98.9$	93.5 86.8 5.8 8.8 44.1 89.8	$\begin{array}{r} 44.6 \\ 77.3 \\ 3.2 \\ 4.3 \\ 5.9 \\ 30.7 \end{array}$	$3.9 \\ 52.3 \\ 1.1 \\ 2.0 \\ 0.6 \\ 6.4$	$\begin{array}{c} 0.0 \\ 1.4 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \end{array}$	0.4 0.1 0.0 0.0 0.1				
$\begin{array}{c} 497\\ 49834\\ 500\\ 5011\frac{1}{2}\\ 502\\ 503\frac{1}{2}\\ 505\frac{1}{4}\end{array}$	100.0	68.1	$100.0 \\ 100.0 \\ 58.6 \\ 100.0$	$ \begin{array}{r} 98.6\\ 100.0\\ 96.5\\ 48.9\\ 99.8\\ 99.7\\ 92.9 \end{array} $	97.0 99.9 94.1 45.0 99.6 99.1 91.3	$95.0 \\ 99.7 \\ 91.1 \\ 42.2 \\ 99.2 \\ 98.4 \\ 90.0 $	91.7 99.4 86.7 40.2 98.4 97.2 88.4	86.1 99.0 80.0 38.0 96.3 95.4 86.3	73.8 97.2 61.8 33.6 80.4 87.6 80.1	58.5 91.0 21.1 20.4 34.6 57.1 61 9	29.0 78.5 3.0 9.1 8.1 24.3 36.2	$ \begin{array}{c} 10.4 \\ 32.4 \\ 0.5 \\ 3.9 \\ 0.8 \\ 2.9 \\ 12.9 $	$\begin{array}{c} 0.2 \\ 0.4 \\ 3.7 \\ 0.1 \\ 0.3 \\ 0.1 \\ 0.1 \\ 1.9 \end{array}$	$\begin{array}{c} 0.1 \\ 0.4 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 1.0 \end{array}$	No No<		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
507 50834 51012 51214 513 514	100.0	1.5	100.0 100.0	99.4 99.4 1.0	98.9 99.0 100.0 1.0	$100.0 \\ 98.2 \\ 98.7 \\ 100.0 \\ 99.9 \\ 1.0 \\ 0.7 \\ 0.0$	99.9 96.4 98.4 99.9 99.8 0.9	99.9 91.6 97.7 99.9 99.7 0.8	98.8 71.5 93.7 99.1 99.6 0.7	80.0 32.4 58.0 90.9 98.7 0.5	$\begin{array}{c} 30.2 \\ 42.7 \\ 11.2 \\ 9.5 \\ 66.8 \\ 82.1 \\ 0.3 \\ 0.3 \end{array}$	$\begin{array}{c} 12.5 \\ 7.6 \\ 2.5 \\ 2.0 \\ 31.9 \\ 24.6 \\ 0.2 \end{array}$	$ \begin{array}{c} 1.9\\ 0.7\\ 0.2\\ 0.1\\ 4.1\\ 9.9\\ 0.1\\ \end{array} $	$ \begin{array}{c} 1.0\\ 0.2\\ 0.1\\ 0.1\\ 1.1\\ 0.9\\ 0.0\\ \end{array} $			Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max	
514½ 515 517 518		00.0 00.0	$ \begin{array}{r} 8.1 \\ 100.0 \\ 93.9 \\ 96.5 \end{array} $	$ \begin{array}{r} 67.6 \\ 98.6 \\ 92.5 \\ 93.4 \\ \end{array} $	$ \begin{array}{r} 67.5 \\ 98.1 \\ 92.1 \\ 91.7 \end{array} $	$ \begin{array}{r} 67.3 \\ 97.3 \\ 91.7 \\ 89.5 \end{array} $		$ \begin{array}{r} 66.8 \\ 94.4 \\ 89.7 \\ 76.9 \end{array} $		53.5 72.1 65.4 24.1	$ \begin{array}{r} 17.7 \\ 22.9 \\ 52.6 \\ 7.8 \end{array} $	$2.0 \\ 1.5 \\ 23.8 \\ 2.9$	$0.1 \\ 0.1 \\ 1.2 \\ 0.1$	$ \begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array} $	10 A (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(a) (b) (b) <th(c)< th=""> <th(c)< th=""> <th(c)< th=""></th(c)<></th(c)<></th(c)<>	

*See also Table 41

8

đ

135

8

8-

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles	Large Gravel		Medium Gravel			Fine (Gravel J. S. Bu	Coarse reau of §	Sand Medium Sand Soils Classification)			Fine Sand		Very Fine Sand	Silt		Clay	
Cairo										······								
-	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
	1									1			1					
$519\frac{1}{6}$	100.0	97.3	92.9	89.1	86.7	83.0	78.0	71.2	53.5	24.9	6.6	1.8	0.1	0.1	~~~~			
5201/2			~~~~~		100.0	-99.9	99.9	99.8	98.5	73.6	26.2	3.3	0.1	0.1	*****	an be an bi bi		
$521\frac{3}{4}$.		44, 117, 148, 84, 87, 77, 78,	100.0	99.6	99.5	99.2	98.9	98.3	96.7	93.2	07.9	5.0	0.1	0.1		10. AU 41. 10. 10. 10. 10.	******	
$522\frac{1}{2}$.			100.0	99.9	99.8	99.7	99.5	98.0	94.0	68.2	87 0	62.0	14 0	3.7				
$523\frac{1}{2}$.	n n v v n v v		100.0	100.0	99.9	99.0	99.0	98.0	90.9	71 5	28.2	15.5	1.4	0.3				
526		pr 14 m 14 m 14 m 14	100.0	99.0	90.4	94.9	97.3	99.1	97.9	94.4	83.6	15.3	$\tilde{0.2}$	0.1	******	-		
520%		****	100.0	00.0	100.0	99.1	99.9	99.8	99.6	98.7	89.1	15.4	0.1	0.1		~		102 are 30 day 100 107 400
021 1/4 200	ay ay in ay an hin ph	a u u u a a v v	100.0	99.9	99.8	99.7	99.6	99.3	98.5	96.2	80.3	9.4	0.1	0.1	12 million 20 million 80 million			
520	an an an ha ha na ma		100.0	00.0	0010		100.0	99.9	99.7	92.8	49.7	3.9	0.1	0.1				
53014						100.0	99.9	99.9	99,4	91.8	70.4	20.6	0.1	0.1				
532					100.0	99.9	99.9	99.8	99.8	98.5	91.8	24.1	0.2	0.1	~ ~ ~ ~ ~ ~ ~ ~ ~			
5331/4		~~~~~	100.0	99.4	99.3	99.1	98.5	97.5	93.8	77.7	49.7	11.8	0.1	0.1				
536			100.0	99.5	99.2	98.4	96.6	92.5	77.4	40.7	12.9	3.7	0.2	0.1	******	~~~~~~~~~~		
537	100.0	84.1	81.4	78.1	75.6	72.6	68.3	62.3	48.8	27.6	14.8	5.1	0.1	0.0	~~~~~			
537 1/2			100.0	99.9	99.7	99.5	99.2	97.3	85.7	37.1	9.5	1.1	0.1	0.1				
$538\frac{1}{2}$			100.0	98.8	98.1	97.0	95.4	92.7	82.3	42.2	13.0	3.4	0.1	0.1	n n ar le dé vir u			
$538\frac{3}{4}$	100.0	93.8	92.8	92.1	91.7	91.1	89.4	85.8	73.7	95.4	0.4	1.0	0.1	0.1				
539A	~~~~~	100.0	98.8	97.4	96.5	95.2	92.8	88.5	74.1	01 8	65.0	16 5	0.1	0.1	20 Au ar an an an an			
539B	** ** ** ** ** **			100.0	99.9	99.9	99.8	99.7	00.5	04 7	50.2	16.4	0.1	Ŏ.Î				
53914			100.0		100.0	99.9	99.8	99.0	08.7	97.2	93 0	78 1	2.2	0.4				
539%			100.0	99.9	00.8	00.5	08.8	97 1	88.9	46 2	9.3	2.0	0.2	0.1				
540	100.0	07.0	80.0	99.5	87 9	86.4	84 9	81 9	70.2	30.7	5.3	0.5	0.1	0.1				
5401/4	100.0	100.0	08.8	96.9	95.5	93.8	90.7	83.6	59.3	17.4	2.2	0.4	0.1	0.1				
540 24 2		100.0	00.0	50.0	100.0	99.9	99.9	99.8	99.8	99.4	87.6	19.8	0.2	0.1				
54114					100.0	99.9	99.9	99.8	99.6	97.9	81.1	31.5	10.3	10.0				
54334					100.0	99.9	99.9	99.8	98.1	59.8	14.9	1.9	0.1	0.1				
5461					100.0	99.9	99.8	99.8	98.8	60.5	9.4	0.5	0.1	0.1		~~~~~~		
548		100.0	98.3	94.6	93.0	91.9	90.3	87.6	79.1	60.2	37.0	7.0	0.3	0.1				
5481/2	100.0	34.4	27.2	22.2	20.1	18.1	16.1	13.9	9.9	5.3	2.3	0.5	0.1	0.0				
549	100.0	97.2	93.9	90.8	88.5	86.1	83.1	78.3	65.8	41.3	11.0	1.0	0.1					
5491/2								100.0	99.3	87.4	30.7	7.4	0.2	0.1				
551	100.0	98.5	94.5	89.5	86.2	81.7	75.3	65.9	46.0	15.8	3.0	0.9		0.0		~ ~ ~ ~ ~ ~ ~ ~		
554			100.0	99.8	99.7	99.6	99.3	97.2	10.1	5.0	0.0	0.7	0.0				· · · · · · · · · · · · · · · · · · ·	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
555	100.0	84.2	83.0	82.5	81.9	80.3	1 17.1	09.4	02.0	70.5	50.9	99 7	0.1	1 0.0	~~~~~			
556			100.0	99.7	99.0	99.4	99.1	07 4	92.0	66 7	33 9	16.8	0.9	0.1				
5581/2			100.0	99.0	00.6	00.2	08.8	97.5	91.9	74 6	48.2	7.4	0.1	ŏ.õ				
5801/		100.0	00.0	98.9	98.8	98.5	98.1	97.2	92.8	75.7	37.3	5.1	0.1	0.0				

*See also Table 41.

.a

3

136

3

-2
1 i

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles Below	Large	Gravel	Me	dium Gr	ravel	Fine (Gravel J. S. Bu	Coarse reau of \$	Sand Soils Cla	Mediu ssificatio	m Sand m)	Fine	Sand	Very Fine Sand	s	ilt	C	lay
Cairo							Size	of open	ing in n	m,								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
$563\frac{1}{2}$ 565 $566\frac{1}{2}$ 568 $569\frac{1}{2}$ 5703	100.0	97.5 100.0 100.0	$100.0 \\ 94.5 \\ 100.0 \\ 98.6 \\ 97.8$	$99.8 \\ 92.5 \\ 99.4 \\ 94.1 \\ 97.4$	$99.7 \\ 91.2 \\ 99.4 \\ 90.4 \\ 97.3$	$99.2 \\88.9 \\99.1 \\85.1 \\97.1$	97.3 85.2 98.7 77.8 96.9	$92.7 \\ 78.5 \\ 98.0 \\ 68.0 \\ 96.4$	75.6 57.0 94.0 51.0 94.7	$35.2 \\ 17.3 \\ 60.7 \\ 26.4 \\ 86.9$	14.2 2.1 12.5 4.6 30.6	$4.6 \\ 0.2 \\ 1.0 \\ 0.4 \\ 2.3$	$\begin{array}{c} 0.4 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	$0.1 \\ 0.1 $				
5721/2 5731/2 575	100.0 100.0	95.5 5.4	86.2 0.4	82.7 0.0	$\begin{array}{c}100.0\\81.6\end{array}$	99.9 80.3	$99.9 \\ 78.4$	$99.7 \\ 74.7$	$95.1 \\ 57.8$	$\begin{array}{c} 54.1 \\ 19.3 \end{array}$	$\substack{18.8\\3.6}$	$9.0 \\ 1.0$	100.0 1.4 -0.1	$ \begin{array}{r} 90.3 \\ 0.3 \\ 0.1 \end{array} $	04.3	34.0	27.1	
57532 577 578 579 580 581 58134 583 583 583 583 583 583 583 588 588 588	100.0 100.0 100.0 100.0 100.0 100.0	32.5 100.0 555.9 74.6 89.3 98.2 100.0 69.5	$\begin{array}{c} 27.4\\ 95.5\\ 100.0\\ 100.0\\ 100.0\\ 41.5\\ 86.5\\ 94.5\\ 99.0\\ 62.1\\ \end{array}$	$\begin{array}{c} 23.7\\ 92.5\\ 99.9\\ 99.1\\ 99.0\\ 34.7\\ 100.0\\ 65.8\\ 85.4\\ 93.4\\ 96.6\\ 58.1\\ 100.0\\ \end{array}$	$\begin{array}{c} 22.1\\ 90.7\\ 99.9\\ 98.9\\ 98.7\\ 32.0\\ 99.9\\ 63.7\\ 84.9\\ 92.8\\ 95.6\\ 57.3\\ 99.8 \end{array}$	$\begin{array}{c} 20.6\\ 88.3\\ 99.8\\ 98.6\\ 98.5\\ 30.0\\ 99.7\\ 62.1\\ 84.2\\ 92.3\\ 94.4\\ 56.3\\ 99.8 \end{array}$	$\begin{array}{c} 18.7\\ 84.6\\ 99.8\\ 98.1\\ 98.2\\ 28.2\\ 99.2\\ 59.9\\ 81.8\\ 91.1\\ 91.6\\ 55.0\\ 99.6\end{array}$	$\begin{array}{c} 16.4\\ 77.6\\ 99.2\\ 96.9\\ 97.5\\ 26.2\\ 96.1\\ 54.9\\ 75.6\\ 88.6\\ 88.6\\ 86.7\\ 51.6\\ 99.2 \end{array}$	$\begin{array}{c} 11.0\\ 53.8\\ 94.0\\ 89.5\\ 89.3\\ 20.8\\ 71.9\\ 36.6\\ 49.9\\ 78.9\\ 69.8\\ 35.2\\ 95.7 \end{array}$	$\begin{array}{c} 3.5\\ 17.4\\ 61.9\\ 66.8\\ 37.5\\ 9.9\\ 25.5\\ 10.0\\ 13.3\\ 45.0\\ 29.7\\ 11.3\\ 59.9 \end{array}$	$\begin{array}{c} 0.6\\ 2.2\\ 24.1\\ 32.5\\ 14.8\\ 5.4\\ 12.2\\ 1.9\\ 1.7\\ 10.2\\ 6.9\\ 4.1\\ 14.7\end{array}$	$\begin{array}{c} 0.2\\ 0.3\\ 4.0\\ 4.2\\ 8.9\\ 3.9\\ 8.4\\ 0.6\\ 0.3\\ 3.1\\ 2.5\\ 2.4\\ 1.4\\ 100\\ 0\end{array}$	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.2 \\ 0.6 \\ 0.1 \\ 0.2 \\ 2.0 \\ 0.1 \\ 0.1 \\ 0.2 \\ 2.0 \\ 0.1 \\ 0.1 \\ 0.2 \\ 2.0 \\ 0.1 \\$	$\begin{array}{c} 0.0\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.0\\ 0.1\\ 0.0\\ 0.1\\ 2.0\\ 0.0\\ 0.1\\ 93.6\end{array}$	80.5		21 2	
591 593 595 595 595 595 595 595 595 5 4 595 5 4 595 5 4 595 5 4 595 5 4 595 5 4 5 95 5 4 5 95 5 4 5 95 5 4 5 95 5 4 5 95 5 4 5 95 5 5 5	100.0 100.0 100.0	97.7 74.8 28.4 74.1	$ \begin{array}{c} 100.0 \\ 100.0 \\ 100.0 \\ 92.6 \\ 71.8 \\ \hline 23.0 \\ \hline 62.0 \\ \hline 62.0 \\ \hline \end{array} $	$ \begin{array}{r} 98.4 \\ 99.8 \\ 98.3 \\ 90.8 \\ 68.0 \\ \hline 21.0 \\ 100.0 \\ 60.1 \\ \end{array} $	$\begin{array}{c} 98.1 \\ 99.7 \\ 96.9 \\ 90.4 \\ 65.3 \\ \hline 20.4 \\ 99.9 \\ 58.6 \end{array}$	97.8 99.3 94.5 90.3 62.0 20.0 99.9 57.7	$\begin{array}{r} 97.2\\ 98.3\\ 90.8\\ 90.2\\ 56.5\\ 100.0\\ 19.6\\ 99.8\\ 56.9\end{array}$	$\begin{array}{r} 96.2\\ 96.9\\ 85.9\\ 90.1\\ 48.7\\ 99.9\\ 19.1\\ 99.8\\ 55.8\end{array}$	$\begin{array}{r} 90.5\\ 91.8\\ 73.6\\ 89.3\\ 32.1\\ 99.9\\ 16.7\\ 99.7\\ 49.0 \end{array}$	$\begin{array}{c} 65.0 \\ 72.0 \\ 31.5 \\ 83.2 \\ 10.3 \\ 99.6 \\ 8.9 \\ 99.6 \\ 24.4 \end{array}$	$\begin{array}{r} 22.7\\ 44.5\\ 11.7\\ 46.4\\ 2.9\\ 97.3\\ 2.6\\ 98.9\\ 6.1 \end{array}$	$\begin{array}{c} 3.0 \\ 5.4 \\ 7.3 \\ 15.3 \\ 1.6 \\ 56.3 \\ 0.5 \\ 83.7 \\ 0.9 \end{array}$	$\begin{array}{c} 33.2\\ 0.7\\ 0.2\\ 0.5\\ 1.0\\ 0.1\\ 2.6\\ 0.1\\ 5.3\\ 0.1 \end{array}$	$\begin{array}{c} 33.0\\ 0.6\\ 0.1\\ 0.2\\ 0.2\\ 0.0\\ 1.0\\ 0.0\\ 1.2\\ 0.1 \end{array}$			91.9	
5963/2 5963/2 5963/4 597A 597A 5971/2 5973/2 5973/2 598	100.0	8.6 72.9 100.0	0.0 100.0 68.3 99.2	99.3 65.9 93.9 100.0	$\begin{array}{r} 98.4 \\ 100.0 \\ 64.5 \\ 90.4 \\ 100.0 \\ 99.9 \end{array}$	$\begin{array}{r} 96.7\\99.9\\63.3\\100.0\\84.7\\99.9\\99.9\end{array}$	$\begin{array}{r} 93.5\\99.9\\61.4\\99.9\\75.2\\99.9\\99.8\end{array}$	87.6 99.6 58.9 99.9 60.7 99.8 99.8	67.6 97.6 54.5 99.8 30.1 97.3 99.5	$\begin{array}{r} 22.7\\85.4\\47.9\\99.7\\4.8\\79.2\\96.1\end{array}$	$\begin{array}{r} 3.4 \\ 32.8 \\ 33.8 \\ 99.5 \\ 1.0 \\ 31.0 \\ 84.3 \end{array}$	$ \begin{array}{r} 1.8 \\ 3.0 \\ 6.8 \\ 80.1 \\ 0.3 \\ 3.3 \\ 34.3 \\ 34.3 \end{array} $	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 1.7 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$				

*See also Table 41.

8

.6

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles	Large	Gravel	Med	ium Gra	vel	Fine (U	Gravel J. S. Bu	Coarse reau of b	Sand Soils Cla	Mediur ssificatio	n Sand n)	Fine	Sand	Very Fine Sand	Sil	lt	CI	lay
Cairo							Size	of open	ng in m	m.								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
		1		1	1			1							1			Man
$598\frac{1}{4}$	100.0	88.9	85.0	80.2	77.7	74.2	69.5	61.4	36.6	8.6	1.8	0.4	0.1	0.1				~~~~~
$598\frac{1}{2}$	100.0	95.8	93.2	92.8	92.6	-92.2	-91.1	88.0	72.8	24.5	2,4 82.6	10.3	0.1	0.0				
598½A					100.0	99.9	99.9	99.8	99.0 72.0	90.2 40.4	16.3	14	0.1	0.1				
599	100.0	97.6	92.1	90.4	100 0	89.1	01.1	09.7	99.4	97.9	95.9	63.5	0.4	0.1				
599A #001/		~ ~ ~ ~ ~ ~ ~ ~	100.0	- <u>-</u>	93.5	89.7	84 0	75.8	51.8	13.7	2.7	0.4	0.1	0.1				10 m
5001/A		~~~~~~	100.0	50.0	100.0	99.9	99.9	99.4	93.6	59.7	21.4	8.2	0.1	0.1		~ ~ ~ ~ ~ ~ ~		
50034			100.0	99.9	99.8	99.4	98.5	96.7	88.5	61.3	45.9	41.9	5.6	1.9				
600			100.0	99.9	99.8	99.6	99.2	98.1	90.9	56.8	13.2	1.2	0.1	0.1				
600 A			100.0	99.8	99.7	99.6	99.5	99.1	93.1	52.7	12.5	2.2	0.1	0.1				
6001/2						100.0	99.9	99.9	99.5	95.4	73.0	13.6	0.1	0.1			~~~~~~~	
$601^{8}/_{5}$			~ ~ ~ ~ ~ ~ ~ ~ ~			100.0	99.9	99.9	99.5	97.1	82.8	10.9	0.2	0.0				
$601\frac{3}{4}$					100.0	99.9	99.8	99.7	97.9	89.5	00.0	12.0	2 2	0.1	~~~~~	~ ~ ~ ~ ~ ~ ~ ~		
$602\frac{1}{2}$				100.0	99.9	99.9	99.6	98.9	98.4	1 98.0	90.9	04.0	4.1	2 9		****		
603	100.0	67.9	62.4	61.3	60.9	60.5	59.9	08.0	00.4	41.9	85	20.0	0.2	õĭ				
$604\frac{3}{4}$			100.0	99.1	99.0	98.7	98.1	90.4	00.7	20.0	85.0	16.2	0.2	0.1				
$605\frac{3}{4}$				~~~~~~	100.0	100.0	99.9	99.0	00.2	00.7	97.5	28 6	0.2	0.1				
606A	~~~~~~~			100 0	00.0		00.8	98.5	77 7	18.3	4.7	1.2	0.1	0.0				
606				100.0	00.0	100.0	99.0	99.9	99.8	99.3	90.8	19.2	0.2	0.1				
600 1/2	~ = ~ ~ ~ ~ ~					100.0	99.9	99.8	97.8	73.1	19.1	2.1	0.1	0.1				
6071					100 0	99.9	99.9	99.8	99.7	98.5	94.0	58.3	0.9	0.1				
001 ½ 208			100 0	99 6	99.3	98.8	98.1	96.6	90.0	71.7	34.8	4.5	0.2	0.1				
60814			100.0	99.6	99.1	98.6	97.7	96.6	91.6	64.7	21.6	3.5	0.1	0.1				
60812						100.0	99.9	99.9	97.7	75.3	47.4	26.6	0.9	0.1	~ ~ ~ ~ ~ ~ ~ ~			
609							100.0	99.9	99.9	97.5	74.4	17.8	0.2	0.1	w.w. = # = 10 11			
6091/6	100.0	93.5	89.8	86.5	85.0	83.2	81.0	77.1	66.1	43.3	16.2	2.9	0.1	0.0				
610			100.0	99.3	99.2	99.1	98.9	98.1	92.4	69.2	28.9	3.3	0.1	0.1				· · · · · · · · · · · · · · · · · · ·
611				100.0	99.8	99.7	99.6	99.4	97.3	78.7	19.7	1.(0.1	0.1		~ ~ ~ ~ ~ ~ ~ ~		
612		. 100.0	95.9	93.2	91.9	90.2	88.2	83.8	01.1	20.1	97.9	4.07	0.8	0.2				
$612\frac{1}{4}$	and and 100 and 100 and 100		. 100.0	99.6	99.6	99.5	99.4	99.1	97.0	56 0	12 7	9.5	0.0	0.1				
613				100.0	99.9	99.9	99.9	99.0	99.0	00.0	00 4	27.3	4.5	1.5				
614					100.0	99.9	100.0	99.9	00 5	08.4	90.1	89 8	52 1	48.8				
614A				100 0	00.0	00.0		00 4	04 4	60.3	22 1	6.1	0.8	0.6				
615	11 Jan 10 10 10 10		100.0	100.0	00.5	00 4	00 0	97.6	89.6	56.4	23.5	7.7	0.3	0.1				
617	100.0	22 A	100.0 87 0	64 5	63 0	62 0	60.8	59.2	51.0	30.1	19.5	15.2	11.2	10.7				
619	100.0	00.0	01.0	01.0	00.0	02.0	00.0	00.2				100.0	93.8	71.5	63.9	42.8	30.2	
020		100 0	94 1	89.9	87.1	83.4	77.1	65.5	38.1	13.5	4.4	0.5	0.1	0.1				
628		1 100.0	0	1		100.0	99.9	99.8	99.3	97.0	95.8	94.1	10.0	1.6	l			

*See also Table 41.

.5 5

10.00

+ 4

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

ė

4

			the second se	and the second se		and the second se	Company of the local data and th	the second se	and the second sec	Contract of the second s	And the second s	Concernance and the second second second	And the second sec	the second se	Concerning the local diversion of the local d	And a local distance of the second se	The result of the low of the low of the	And and an and a state of the s
Miles	Large	Gravel	Me	dium Gr	avel	Fine (U	Gravel J. S. Bu	Coarse reau of	e Sand Soils Cla	Medius ssificatio	m Sand on)	Fine	Sand	Very Fine Sand	s	ält	C	lay
Cairo							Size	of open	ing in m	m.								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0,417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
630 631 631A 633 633A 635		100.0	98.4 100.0 99.3	$97.2 \\ 100.0 \\ 99.4 \\ 98.3 \\ 100.0 \\$	96.7 100.0 99.9 99.3 97.5 99.9	96.0 99.9 99.9 99.1 96.7 99.9	94.6 99.9 99.7 98.8 95.4 99.8	$90.8 \\ 99.9 \\ 99.1 \\ 98.3 \\ 91.9 \\ 99.7$	$72.6 \\98.7 \\94.7 \\93.2 \\73.5 \\96.4$	$39.2 \\ 88.7 \\ 60.5 \\ 81.5 \\ 23.0 \\ 55.7$	$10.5 \\ 50.3 \\ 12.6 \\ 73.3 \\ 4.6 \\ 9.8$	$3.3 \\ 7.0 \\ 1.1 \\ 57.7 \\ 0.9 \\ 2.1$	$\begin{array}{c} 0.4 \\ 0.4 \\ 0.1 \\ 3.2 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	$0.2 \\ 0.1 \\ 0.1 \\ 0.4 \\ 0.1 \\ 0.1 \\ 0.1$				
638 639 640 642 643					100.0	$99.9 \\ 100.0 \\ 100.0$	99.9 99.9 99.9	99.8 99.9 99.9	96.1 99.7 99.7	$74.6 \\ 99.5 \\ 99.1$	$43.0 \\ 99.0 \\ 98.3$	$20.3 \\ 98.5 \\ 97.4 \\ 100.0$	$ \begin{array}{r} 100.0 \\ 0.9 \\ 69.5 \\ 36.5 \\ 93.8 \\ \end{array} $	$95.4 \\ 0.1 \\ 28.2 \\ 12.1 \\ 91.3 \\ 0.1 \\ $	90.4 81.7	42.5	28.7	
647 648 650 657 659	100.0	73.4	100.0 100.0 56.1	$ \begin{array}{r} 99.9 \\ 99.9 \\ 52.2 \\ 100.0 \\ 99.9 \\ 00.0 \\ $	99.9 99.9 50.8 99.9	99.8 99.8 49.6 99.7	99.799.848.099.500.6	$ \begin{array}{r} 99.1 \\ 99.6 \\ 44.3 \\ 99.1 \\ 00.0 \\ \end{array} $	93.8 98.4 29.3 95.5 02.0	59.0 91.6 14.3 83.7 e_{2} 9	$ \begin{array}{r} 15.3 \\ 73.8 \\ 4.6 \\ 64.4 \\ 22.0 \\ \end{array} $	100.0 2.9 35.4 1.2 8.5 2.0	$95.5 \\ 0.5 \\ 1.5 \\ 0.4 \\ 0.2 \\ 0.2$			47.7	32.4	
659A 662 666 670 671	100.0	100.0 67.2	$ \begin{array}{c} 100.0 \\ 98.6 \\ 60.1 \\ 100.0 \end{array} $	$ \begin{array}{c c} 99.9\\ 97.1\\ 98.2\\ 57.2\\ 99.7\\ 99.7\\ \end{array} $	99.9 94.4 97.3 55.9 99.6	99.8 92.1 96.5 54.8 99.4	99.0 89.8 95.3 53.6 99.3		$ \begin{array}{r} 92.9 \\ 74.5 \\ 78.7 \\ 44.8 \\ 97.4 \\ 97.4 \\ \end{array} $	$ \begin{array}{r} 62.2 \\ 50.0 \\ 37.1 \\ 20.8 \\ 88.3 \\ 88.3 \\ \end{array} $	$ \begin{array}{c} 25.5 \\ 27.3 \\ 9.4 \\ 6.0 \\ 38.4 \\ \end{array} $	12.5 1.4 1.4 4.1						
676 683 687 689 693	100.0	100.0	71.5 99.2 100.0 100.0	67.5 97.3 99.9 99.9	$ \begin{array}{r} 00.4 \\ 95.4 \\ 99.9 \\ 100.0 \\ 99.7 \\ \end{array} $	$ \begin{array}{r} 65.8 \\ 93.7 \\ 99.8 \\ 99.9 \\ 99.4 \\ \end{array} $	90.5 99.8 99.9 99.0	62.4 85.0 99.7 99.8 98.2	$ \begin{array}{r} 51.3 \\ 65.8 \\ 96.3 \\ 98.6 \\ 94.7 \\ \end{array} $	25.5 35.9 74.8 92.1 75.7	$ \begin{array}{c} 10.0 \\ 15.7 \\ 32.9 \\ 84.5 \\ 42.4 \end{array} $	$ \begin{array}{r} 3.8 \\ 6.1 \\ 4.4 \\ 51.4 \\ 11.5 \\ \end{array} $	$0.4 \\ 0.4 \\ 0.1 \\ 1.8 \\ 0.2$	$0.1 \\ 0.2 \\ 0.1 \\ 0.4 \\ 0.1$				Max Max <thmax< th=""> <thmax< th=""> <thmax< th=""></thmax<></thmax<></thmax<>
696 701 708½ 709 710		100.0 100.0	98.9 97.4	96.4 96.3	100.0 96.0 96.2	$99.9 \\ 95.4 \\ 95.7 \\ 100.0 \\ 99.9$	$99.9 \\ 94.3 \\ 95.0 \\ 99.9 \\ 99.9 \\ 99.9$	99.8 90.7 93.1 99.9 99.8	$99.4 \\ 57.2 \\ 71.3 \\ 99.7 \\ 99.7$	91.4 6.9 29.6 97.7 98.9	$ \begin{array}{c c} 40.0 \\ 1.9 \\ 11.9 \\ 77.4 \\ 92.1 \\ \end{array} $	$3.3 \\ 0.6 \\ 1.6 \\ 12.0 \\ 42.9$	$0.2 \\ 0.1 \\ 0.1 \\ 0.4 \\ 0.8$	$0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2$				
$710\frac{34}{711}$ $712\frac{14}{713}$	100.0	90.7 91.5	86.6 85.6	80.6 84.1	$ \begin{array}{c} 100.0 \\ 77.9 \\ 100.0 \\ 83.7 \\ 100.0 \end{array} $	75.9 99.9 83.5 99.9	72.1 99.8 83.2 99.9	66.8 99.7 82.4 99.7	$51.9 \\ 99.4 \\ 75.8 \\ 98.1 \\ 0.1 \\ $	$ \begin{array}{r} 15.1 \\ 97.7 \\ 40.1 \\ 86.0 \\ \end{array} $	$ \begin{array}{c} 2.8 \\ 83.7 \\ 6.8 \\ 38.4 \\ 38.4 \end{array} $	$ \begin{array}{c} 0.3 \\ 31.4 \\ 0.6 \\ 4.1 \\ \end{array} $	$\begin{array}{c} 0.1 \\ 0.6 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	$0.0 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.1$				
$713A \\715\frac{3}{4} \\716\frac{1}{4} \\718\frac{1}{2} \\720$	100.0	91.1	85.4	82.9	100.0 82.3 100.0 98.4	$ \begin{array}{r} 100.0 \\ 99.8 \\ 81.5 \\ 99.9 \\ 98.1 \end{array} $	99.9 99.7 80.7 99.9 97.8	99.9 99.5 79.6 99.6 97.0	99.8 98.1 73.5 97.0 91.3	$ \begin{array}{r} 99.6 \\ 88.9 \\ 46.7 \\ 86.2 \\ 65.4 \end{array} $	$ \begin{array}{c} 95.3 \\ 69.8 \\ 16.8 \\ 48.5 \\ 22.6 \\ \end{array} $	$ \begin{array}{r} 37.7 \\ 28.0 \\ 6.4 \\ 6.1 \\ 5.2 \\ \end{array} $	$ \begin{array}{c} 1.1 \\ 0.7 \\ 0.3 \\ 0.1 \\ 0.1 \end{array} $	$0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1$	100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101		10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	
722		100.0	33.1	100.0	99.9	99.8	99.7	99.6	97.5	74.7	32.7	8.0	0.2	0.1				

*See also Table 41.

s 6

Mechanical Analyses of Material from Bed of Mississippi River.*

Accumulative Per Cent Finer

Miles	Large	Gravel	Me	dium Gr	avel	Fine (U	Gravel . S. Bu	Coarse reau of 8	Sand Soils Cla	Mediun ssificatio	n Sand n)	Fine	Sand	Very Fine Sand	Sil	t	C	ay
Cairo							Size	of openi	ng in m	m.								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0,295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
7231/2 7251/2 7251/2 736 740 742 745 746 742 757 7581/2 7581/2 7591/2 7591/2 7601/2 7601/2 7601/2 7601/2 7601/2 7601/2 7603/2 766 767 767 763 766 767 767 767 767 771 7711/2 7711/2 7731/2 77853/4 7863/4 7863/4 7863/4 7863/4 7863/4 7863/4 7863/4 7863/4 7863/4 7870/2 7771/2 77853/4 7863/4 7870/2 77853/4 7863/4 7870/2 77853/4 7863/4 7870/2 77853/4 7863/4 7870/2 77853/4 7870/2 77853/4 7870/2 77853/4 7870/2 7771/2 77853/4 7870/2 7771/2 77853/4 7870/2 7771/2 77853/4 7870/2 7771/2 77853/4 7870/2 7771/2 77853/4 7771/2 77853/4 7771/2 77853/4 7771/2 77853/4 7771/2 77753/4 7771/2 7771/2 77753/4 7771/2 7771/2 77753/4 7771/2 7771/2 7771/2 77753/4 7771/2 7771/2 77753/4 7771/2 7771/2 77753/4 7771/2 7771/2 7771/2 77753/4 7771/2 7771/2 77753/4 7771/2 77753/4 7771/2 77753/4 7771/2 77771/2 77753/4 7771/2 77753/4 7771/2 7771/2 77753/4 7771/2 77771/2 77771/2 77753/4 7771/2 7771/2 77753/4 77771/2 77771/2 77771/2 77753/4	38.10	13.33 100.0 10	6.680 99.5 99.5 100.0 99.7 99.1 100.0 100.0 91.9 100.0 95.7 68.5 95.4 98.3 99.3 97.4 100.0 84.3 100.0 84.3 100.0	3.327 98.6 98.3 99.1 97.0 97.2 99.9 99.9 99.9 99.9 99.8 88.7 100.0 99.9 95.2 67.2 92.9 96.9 95.2 67.2 92.9 96.9 98.7 90.2 99.9 88.8 98.8 98.8 99.7 97.0	$\begin{array}{c c} 2.362 \\ \hline 100.0 \\ 97.9 \\ \hline 97.7 \\ 98.8 \\ 95.3 \\ 100.0 \\ 95.8 \\ \hline 100.0 \\ 99.2 \\ \hline 99.8 \\ 87.7 \\ 99.9 \\ 99.9 \\ 99.5 \\ \hline 66.9 \\ \hline 92.4 \\ 96.3 \\ 99.9 \\ 95.2 \\ \hline 66.8 \\ 99.9 \\ 78.5 \\ 98.6 \\ 98.7 \\ 796.8 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 1.168\\ \hline 1.168\\ \hline 99.9\\ 96.0\\ 99.9\\ 96.1\\ 99.9\\ 98.1\\ 88.5\\ 99.8\\ 91.0\\ 99.9\\ 99.5\\ 99.5\\ 99.9\\ 99.5\\ 99.5\\ 99.9\\ 99.9\\ 99.9\\ 99.9\\ 99.5\\ 85.2\\ 99.8\\$	0.833 9.833 99.8 99.9 97.5 89.7 99.9 97.5 82.3 99.9 99.2 99.2 99.2 93.6 100.0 97.5 97.5 897.6 97.3 97.3 97.3 97.5 97.5	$\begin{array}{c} 99.3\\ 99.3\\ 81.1\\ 99.7\\ 87.0\\ 99.6\\ 99.5\\ 99.6\\ 99.5\\ 99.6\\ 99.8\\ 99.6\\ 74.3\\ 99.6\\ 74.3\\ 99.6\\ 74.3\\ 99.6\\ 74.3\\ 99.6\\ 74.3\\ 99.6\\ 74.3\\ 99.6\\ 74.3\\ 99.6\\ 74.3\\ 99.6\\ 74.3\\ 99.6\\$	$\begin{array}{c c} 0.417 \\ \hline 0.417 \\ \hline 95.0 \\ 31.3 \\ 99.4 \\ 72.6 \\ 93.8 \\ 84.8 \\ 15.5 \\ 99.7 \\ 88.8 \\ \hline 15.5 \\ 99.7 \\ 88.8 \\ \hline 22.4 \\ 99.1 \\ 99.8 \\ 99.8 \\ 99.8 \\ 99.8 \\ 99.8 \\ 99.8 \\ 61.7 \\ 14.8 \\ 99.4 \\ 23.0 \\ 14.5 \\ 43.5 \\ 99.4 \\ 23.4 \\ 39.4 \\ 23.4 \\ 39.5 \\ 99.4 \\ 23.0 \\ 66.2 \\ 41.5 \\ 43.7 \\ 43.5 \\ 95.6 \\ 89.6 \\ 62.8 \\ 99.4 \\ 99.8 \\ 89.6 \\ 62.8 \\ 99.4 \\ 99.8 \\ 89.6 \\ 62.8 \\ 99.4 \\ 99.8 \\ 89.6 \\ 62.8 \\ 99.4 \\ 99.4 \\ 99.8 \\ 99.4 \\ 99.4$	$\begin{array}{c} 0.295\\ 84.9\\ 6.3\\ 99.0\\ 35.3\\ 51.1\\ 39.6\\ 5.6\\ 46.0\\ 2.4\\ 99.6\\ 82.8\\ 15.4\\ 27.6\\ 427.6\\ 427.6\\ 427.6\\ 99.3\\ 18.6\\ 3.4\\ 99.4\\ 427.6\\ 99.3\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.7\\ 10.5\\ 12.0\\ 29.6\\ 35.6\\ 68.3\\ 26.6\\ 98.9\\ 98.6\\ 10.5$	$\begin{array}{c} 0.208\\ 68.5\\ 1.3\\ 97.5\\ 10.9\\ 5.2\\ 2.3\\ 11.0\\ 0.7\\ 85.5\\ 78.9\\ 12.6\\ 12.2\\ 3.4\\ 66.2\\ 1.5\\ 0.8\\ 89.6\\ 3.6\\ 7.0\\ 0\\ 1.2\\ 98.6\\ 3.6\\ 7.0\\ 0\\ 1.2\\ 98.6\\ 3.6\\ 7.0\\ 0\\ 1.2\\ 98.6\\ 3.6\\ 7.0\\ 0\\ 1.2\\ 98.6\\ 3.6\\ 7.0\\ 0\\ 1.2\\ 98.6\\ 89.6\\ 3.6\\ 7.0\\ 0\\ 1.2\\ 98.6\\ 3.6\\ 7.0\\ 0\\ 1.2\\ 98.6\\ 3.6\\ 7.0\\ 0\\ 1.2\\ 98.6\\ 3.6\\ 7.0\\ 0\\ 1.2\\ 98.6\\ 82.6\\ 6.1\\ 35.2\\ 22.8\\ 8.6.1\\ 35.2\\ 22.8\\ 6.1\\ 35.2\\ 25.6\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$	$\begin{array}{c} 0.104 \\ 9.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.5 \\ 0.3 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.5 \\ 0.3 \\ 0.2 \\ 0.4 \\ 0.5 \\ 0.2 \\ 0.4 \\ 0.5 \\ 0.5 \\ 0.1 \\ 0.2 \\ 0.4 \\ 13.6 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.5 \\ 0.1 \\ 0.2 \\ 0.4 \\ 13.6 \\ 0.5 \\ 0.7 \\ 0.5 \\ 0.7 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.1 \\ 0.3 \\ 0.5 \\ 0.7 \\ 0.5 \\ 0.5 \\ 0.7 \\ 0.5 \\ 0.5 \\ 0.7 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.7 \\ 0.5 \\ 0$	$\begin{array}{c} 0.074 \\ 1.0 \\ 0.1 \\ 2.3 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.3 \\ 55.9 \\ \hline \\ \hline \\ 3.8 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.5 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.1 \\ $		74.3	0.004	0.001
807 814 826 ¹ ⁄ ₂ 835 ¹ ⁄ ₂ 838			100.0	99.7 100.0	99.4 99.9	$99.2 \\ 100.0 \\ 100.0 \\ 99.8$	98.8 99.9 99.9 99.6	97.9 99.8 99.9 99.5	91.6 99.5 99.8 96.9	52.7 95.8 99.7 63.3	22.5 91.9 99.2 35.3	$ \begin{array}{c c} 11.5 \\ 13.5 \\ 29.4 \\ 7.8 \\ 100.0 \end{array} $	$1.3 \\ 0.2 \\ 0.5 \\ 0.2 \\ 89.2$	$\begin{array}{c c} 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 86.7 \end{array}$	81.0	66.0		
840½ 842			100.0	99.9	99.8	$\begin{array}{c}100.0\\99.7\end{array}$	$\begin{array}{r} 99.9\\99.3\end{array}$	99.8 98.3	99.7 92.8	$\begin{array}{c}94.7\\59.4\end{array}$	$\begin{array}{c} 55.9\\17.4\end{array}$	$\begin{vmatrix} 6.1 \\ 2.8 \end{vmatrix}$	0.4	0.2				

*See also Table 41.

140

.

* 1

11 V

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles	Large	Gravel	Meo	dium Gra	vel	Fine (U	Gravel J. S. Bu	Coarse reau of	e Sand Soils Cla	Mediur ssificatio	n Sand n)	Fine	Sand	Very Fine Sand	s	ilt	C	lay
Cairo							Siz	e of oper	ning in r	nm,								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
04717					100.0	00.0	00.0	00.7	00.4	07.9	40.9	64	0.9	0.1				
841 2					100.0	99.9	99.0	99.7	99.4	97.2	42.0	49 4	0.2	0.1		10 N. 25 IN 14 IN 14		
861		******		and any has the off the out-	100.0	100.0	00.0	99,0	00.8	99.5	80.4	11 9	0.1	0.1	17 15 17 18 40 16 16	10 17 18 17 10 10 10		ar
86716				100.0	99.9	99.9	99.8	99.8	99.7	99.7	98.5	56.8	1.1	0.4			*******	*****
88216				100.0	99.9	99.9	99.8	99.8	99.4	91.5	43.2	6.3	$\hat{0}.\hat{2}$	0.1	10 10 10 10 10 10 10 10			
896					100.0	99.9	99.9	99.8	99.7	97.9	53.8	6.5	0.4	0.3				** ** ** ** ** ** **
911						100.0	99.9	99.9	99.8	99.8	98.7	59.7	16.5	15.2				20 m h h h h h h
917			ha an an an an an an an				100.0	99.9	99.9	99.8	98.5	48.1	0.9	0.3				
924					100.0	99.9	99.9	99.8	99.7	99.7	99.3	53.0	0.6	0.1				
937							100.0	99.9	99.9	99.8	99.3	59.9	8.7	8.2				
$967\frac{1}{2}$								100.0	99.9	99.6	95.6	49.0	0.2	0.1				
$968\frac{1}{2}$						~ ~ ~ ~ ~ ~ ~ ~ ~ ~				100.0	99,9	95.0	2.5	0.5	0.0			
$972\frac{1}{4}$					11. AV 10. 10 M. AV 44	~ ~ ~ ~ ~ ~ ~ ~			100.0	98.4	32.2	7.7	0.1	0.0				
977							~~~~~~~~			100.0	99.5	99.1	98.2	97.9	96.3	82.9	75,5	49.2
9791/2									100.0	99.6	85.1	31.1	0.9	0.6	0.0		~	
983						~ = = = = = =	100 0		100.0	99.9	96.4	27.4	0.2	0.1	0.0			
986%				10, 10, 80, 50, -10, 40	11 10 10 10 10 10 10 10 10 10		100.0	99.9	99.7	98.9	89.3	00.8	30.9	30.6	29.8	24.9	20.8	13.7
99014		14 VA 24 AL 40 11 11	1 10 pr pr - 10 10 10		10° to 10° Tr at at a			100.0	99.9	99.4	65.1	21.3	0.2	0.1	0.0			
992%				U. U. M. M. W. W. M. M.					100.0	98.4	97.6	90.0	95.8	95.5	95.1	80.0	69.6	46.5
994 2			V		~~~~~~~~	41 MI MI 10, 10 10 V			100.0	99.9	97.0	42.0	0.8	0.2	0.0		~~~	
997%								100 0	100.0	99.4	98.8	97.9	95.1	92.4	88.8	63.3	51.1	29.9
99972 100114			21. pr. 10. pr. 10. pr. 10. pr. 10.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			100.0	99.0	99.2	96.2	00.4	100.0	08.4	07.9	07 1	770 1	- 16 6
1001 2				22 22 22 all 10 10 10 10 22	No. 22 10. 10. 10. 10. 10.				100 0	00.6	06.7	59 5	100.0	90.4	97.0	87.1	70.1	42.8
1004 %			1 1 1 1 1 1 1 1 1 1 1	20. M AN 10 10.	~~~~~~				100.0	00.6	04 5	89.3	1.0	1 3	0.0		*** *** *** *** *** ***	
1010				1. 10 of 10 of 10 of					100.0	00.0	09.7	00.3	30.2	22 4	0.0	10 N U U U U U U	** 10 (n. 10 at 10 fe	
10141/					~ ~ ~ ~ ~ ~ ~ ~				100.0	100 0	98.9	82.5	1.6	0.3	0.0			
101712						we are up the to be as			100.0	99.8	99.4	90.1	1.8	0.4	ő.ő	~ = ^ ~ ~ ~ ~ ~	* * * ** ** ** **	** ** ** ** ** ** **
1019			1 m m m m m m						10010	100 0	99.9	99.3	3.3	0.5	ňŏ	the second second second		the law law and the set
10214				201 IL 10 IL 10 AL 10 JA					100.0	99.9	98.0	53.8	1.4	0.5	ŏ.ŏ		10 II AL 10 IV II II II	
10231									100.0	99.9	97.4	71.9	1.5	0.2	0.0			1. I. I. I. I. V. V.
$1027\frac{1}{4}$										100.0	98.2	82.1	16.9	15.1	0.0			
1030									100.0	99.8	97.3	84.1	1.3	0.4	0.0			
1033									100.0	99.8	96.1	29.9	0.8	0.5	0.0			~~~~
1037								100.0	99.9	99.5	94.2	83.7	74.5	70.4	67.7	60.0	51.2	33.0
104034										100.0	99.5	83.1	1.3	0.7	0.0			0010
1044							~ ~ ~ ~ ~ ~ ~ ~	100.0	99.8	99.5	98.8	71.9	0.9	0.6	0.0			
$1047\frac{1}{2}$								100.0	99.9	99.6	92.6	76.7	2.0	0.4	0.0			
1050									At 10, 20, 20, 20, 20, 20, 20,	100.0	99.3	95.3	5.1	0.7	0.0		11 12 13 14 Jan 14 14	
$1052\frac{1}{2}$								100.0	99.9	99.7	99.5	97.3	4.5	1.6	0.0			
1057								100.0	99.9	99.4	99.0	98.8	55.1	42.6	37.8	27.7	23.2	14.9
10581/4												100.0	99.9	98.1	96.7	75.1	63.4	41.4

*See also Table 41.

۶ ٤

 $14 \, \mathrm{k}$

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

Miles	Large	Gravel	Med	lium Gra	ivel	Fine (Gravel . S. Bur	Coarse eau of S	e Sand Soils Cla	Mediu ssificatio	n Sand n)	Fine	Sand	Very Fine Sand	S	ilt	CI	lay
below Cairo		······································					s	ize of op	pening in	a mm.								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0,295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
					1								100.0	99.6	98.7	87.1	76.4	45.2
1060			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	and the second		100 0	99.9	99.8	97.5	83.0	2.4	0.5	0.0			
106214				an an an an an an an	and the fact of the state			10010	100.0	99.8	99.4	95.2	78.2	75.3	73.4	52.9	43.3	27.2
106514									100.0	99.9	99.3	97.4	3.5	0.5	0.0	* * * * * * * *		
1065	~ ~ ~ ~ ~ ~ ~ ~									100.0	99.9	99.7	3.9	0.7	0.0		- 65 7	15 5
10663/								100.0	99.9	99.7	99.1	96.2	78.2	74.4	08.1	29.3	44 8	21 1
106734									100.0	99.8	98.1	94.3	82.9	79.4	00.2	00.5	81.6	50.8
069												100.0	99.9	99.0	99.0	50.0	01.0	0010
10691/2								100.0	99.9	99.9	94.5	05.8	0.0	, 2.1	0.0			
								, sou	in rass		1	100.0	99.9	99.5	99.0	94.5	84.7	52.4
10703/4					1.1 14 14 11 11 11 11 11			100.0	00 0	8 00	99.7	99.2	92.9	88.0	85.3	79.3	70.6	46.2
071	~ ~ ~ ~ ~ ~					~~~~~~	100 0	99.9	99.9	99.6	99.3	98.8	16.4	7.4	0.0			
072					~~~~~~~	a	100.0	100.0	99.8	99.3	96.7	79.7	45.6	44.0	43.2	40.1	35.5	24.4
072%										100.0	99.6	93.7	3.6	0.6	0.0			1
077 077										100.0	99,5	98.1	94.5	92.1	89.1	71.2	59.2	38.4
079									100.0	99.9	99.6	99.3	12.1	3.6	0.0			
08016								100.0	99.8	99.5	199.1	98.3	10.4	2.8	0.0	55 2	45 0	
082										100.0	99.4	97.4	91.0	03.1	72.0	27 0	23 0	17.5
08314	~~~~~										62 7	100.0	91.1	87 1	76 4	51 6	42.6	20.6
$084\frac{1}{4}$						100.0	99.7	98.8	98.0	90.0	99.7	08.0	96.0	96.0	88.2	61.4	52.8	34.2
085							.1	South F	D TUU.U Pace Ray	99.0	1 90.0	1 00.0	1 00.1	, 00.10				
00014		,	1		1	ł	,	1 100 0	00 0	1 99.8	. 99.4	98.2	16.9	1 7.7				
0831/2	10 at 10 10 10 10							100.0	100.0	99.9	99.9	99.7	20.6	1 3.9				
083%	1			1				Southy	vest Pas	s								1
06016	1	1	1	1		100.0	99.9	99.9	99.8	99.6	98.6	87.6	6.9	1.2			1000	- 20 1
07014									. 100.0	99.9	99.8	99.4	84.0	19 2	70.4	0.66	40.2	20.1
.070%								- asses		. 100.0	99.8	98.0	23.3	10.0	87 9	76 4	64.9	39.7
.073		-						. 100.0	98.9	97.2	94.8	92.0	100.0	00.2	08 4	92 0	84 8	42.3
$076\frac{3}{4}$									100.0	00.0	00.7	04.0	200.0	0.7	00.4	02.0		
.082								100 0		99.9	99.1	76 1	24.2	13.9	12.1	11.4	10.6	6.9
10831/2				v 10. 22 m = 10 = 1	e			100.0	00.0	00.0	99.0	99.7	50.0	39.6	37.1	26.1	21.6	13.8
.085	~ ~ ~ ~ ~ ~ ~						100 0		98.0	97 2	95.1	91.4	85.7	83.7	79.8	59.8	49.7	30.4
1085%	ar is an						100.0	99.6	98.0	96.6	95.4	93.8	90.2	88.5	86.0	63.0	49.8	1 23.9
1088 /2	1. 1. 1. 1. 1. 1. 1. 1.		100 0	0.00	99.8	99.7	99.5	99.4	99.1	98.8	98.4	97.4	33.0	9.2				10 0
1000	0		100.0					100.0	99.9	99.9	99.8	99.7	97.5	92.2	40.9	126.6	22.5	10.0
109134									100.0	99.1	97.2	93.9	83.0	1 75.1	61.5	1 33.9	20.0	1 11.6
1001/4	20000000						S	outhwe	st Pass	Bar		1 00 0	1 00 4	1 54 0	1 99 1	1 13 6	t	1
10901%									+100.0	99.4	1 97.0	1 92.0	1 09.4	1 04.0	00.1	1 10.0	1	

*See also Table 41.

*

-5]

-142

a 3

MECHANICAL ANALYSES OF MATERIAL FROM BED OF MISSISSIPPI RIVER.*

Accumulative Per Cent Finer

£

8

Miles	Logality	Medium Gravel	Fine Gravel (U. S. Bur	Coarse eau of S	Sand oils Clas	Mediun sification	n Sand 1)	Fine	Sand	Very Fine Sand	Sil	t	Cl	ay
Cairo	Deanty		Size	of oper	ing in n	ım.								
		6.680 + 3.327 + 2.362	1.651 1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004	0.001
			I	Pass A I	'Outre									
$1069\frac{1}{2}$	1/2 mile below				100.0	00 0	90 B	06.4	14.9	3.6				
$1069\frac{1}{2}$	1 mile below				100.0	00.0	00.5	01.0	11.5	2.0		An 147 AN 14 AV 17 A	4 H H H H H H H H	
10691/2	1 ³ / ₄ miles below				100.0	99.8	96.7	81.2	11.5	3.0	***		****	10 m to 5 m th A
	head.			100.0	99.9	99.8	93.6	65.6	10.4	3.4		~ ~ ~ ~ ~ ~ ~ ~	*****	No. 100 MPT 47 47 47 19, 19
10001/	17 mile and of			Cubit	s Gap	,		e i	1	1	. 1		1 1	
106614	east bank													
10001/	(upper side).			100.0	99.5	98.8	98.1	97.2	94.6	93,4	90.7	76.4	68.0	49.0
100022	Pass				100.0	99.6	99.3	98.7	98.2	98.0	97.2	81.1	67.1	44.3
$1066\frac{1}{2}$	Head of Octave Pass			100.0	99.8	99.5	98.9	97.5	83.6	70.7	62.6	42.4	33.7	20.9
$1066\frac{1}{2}$	Head of Island													
	tave and									00.0		00.1	00.0	14.0
10663/	Brant Passes Head of Brant			100.0	99.8	99.1	98.6	97.1	93.6	89.9	75.0	28.1	22.6	14.3
100074	Pass.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	100.0	99.8	99.6	99.4	98.8	17.4	8.7				
1066%	ael Pass				100.0	99.9	99.9	99.8	24.5	13.1				******
$1066\frac{3}{4}$	1/4 mile east of													
	side of Gap).		****		100.0	98.8	97.2	95.5	91.5	89.0	83.0	59.6	50.6	31.3
$1066\frac{1}{2}$	¹ / ₂ mile east of east bank of													
	Mississippi													
	ter of Gap)					100.0	99.2	97.0	17.5	10.2		****		
	,			The J	ump									
$1059\frac{1}{4}$	1/4 mile below							100:0	05.5	000	68 4	25.0	20.5	20.4
$1059\frac{1}{2}$	head 3⁄4 mile below		10 10 10 10 10 10 10 10 10 10 10 10 10 1	to a n n is in the	*****		** ** Vi. 10, 10 (** **	100.0	99.0	00.9	00.4	30.0	30.5	20.4
	head			100.0	99.2	97.7	95.6	92.6	86.0	82.1	74.6	60.8	51.8	29.8
			вар	tiste Co	nette C	anai				1 00 0	1 00 0		1 00 7	
105814	At head	100.0	99.9 99.9	99.8	99.8	99.5	99.0	98.1	96.1	93.8	82.9	41.8	33.5	22.9
100074	head head							100.0	99.5	97.9	94.2	74.7	66.9	49.0

*See also Table 41.

o 4

TABLE 40.

Mechanical Analyses of Material from Bed of Tributary and Outlet Rivers.*

Accumulative Per Cent Finer

	Large Gravel	Medium Gravel	Fine Gravel	Coarse 8	Sand	Medium	Sand	Fine	Sand	Very Fine	Silt	Clay			
Miles From	mage ormeter		(U. S. Bu	reau of Soi	ils Clas	sification)			Sand					
Cairo			Size	of opening	; in mr	n.									
	38.10 13.33	6.680 3.327 2.362	1.651 1.168	0.833 0	0.589	0.417	0.295	0.208	0.104	0.074	0.040 0.008	0.004 0.001			
				Ohio Ri	ver.										
+1 (Above Cairo -1 (Below Cairo	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{c}12.1\\15.6\end{array}\right $	$\left \begin{smallmatrix} 9.2 \\ 12.2 \end{smallmatrix} \right $	$\left \begin{smallmatrix} 6.5\\ 10.1 \end{smallmatrix} \right $	$\left \begin{smallmatrix} 5.8\\ 9.2 \end{smallmatrix} \right $	$\left \begin{array}{c} 3.9 \\ 8.6 \end{array} \right $	$\begin{array}{c} 3.3\\ 7.6 \end{array}$	$\begin{vmatrix} 3.3 \\ 7.5 \end{vmatrix}$	****				
Miles	Large Gravel	Medium Gravel	Fine Gravel (U. S. Bu	Coarse &	Sand ils Clas	Medium	Sand	Fine	Sand	Very Fine Sand	Silt	Clay			
Black River			Size	in opening	; in mn	n.									
	38.10 13.33	6.680 3.327 2.362	$1.651 \mid 1.168 \mid$	0.833 0	. 589	0.417	0.295	0.208	0.104	0.074	0.040 0.008	0.004 0.001			
	38.10 13.33 6.680 3.327 2.362 1.651 1.168 0.833 0.589 0.417 0.295 0.208 0.104 0.074 0.040 0.008 0.004 0.001 Black River.														
$1 \\ 2 \\ 3 \\ 4$			100.0 99.9	99.8	99.7	99.6	99.4	91.4	$95.4 \\ 95.2 \\ 99.5 \\ 58.7$	90.9 92.0 98.0 56.7 97.8	$\begin{array}{c c c} 72.8 & 34.4 \\ 76.4 & 19.6 \\ 91.4 & 29.5 \\ \hline 95.0 & 75.1 \end{array}$	22.4 16.0			
Miles above Innetion of Old	Large Gravel	Medium Gravel	Fine Gravel (U. S. Bu	Coarse S reau of So	Sand ils Clas	Medium ssification	Sand	Fine	Sand	Very Fine Sand	Silt	Clay			
and Miss. Rivers			Size	of opening	g in mi	m.									
	38.10 13.33	$6.680 \mid 3.327 \mid 2.362$	$1.651 \mid 1.168$	0.833 0	0.589	0.417	0.295	0.208	0.104	0.074	0.040 0.008	0.004 0.001			
				Red Riv	ver.										
$9 \\ 10 \\ 12 \\ 15\frac{1}{2}$							· · · · · · · · · · · · · · · · · · ·	99.0	74.5 97.1	$\begin{array}{c} 63.0 \\ 98.0 \\ 96.0 \\ 97.2 \end{array}$	$\begin{array}{cccc} 55.3 & 32.0 \\ 96.5 & 13.9 \\ 94.3 & 71.5 \\ 93.0 & 59.4 \end{array}$	26.2 18.8			

*See also Table 42.

-3 - -3-

TABLE	40Continued.	

¢.

. 6

MECHANICAL ANALYSES OF MATERIAL FROM BED OF TRIBUTARY AND OUTLET RIVERS.*

Accumulative Per Cent Finer

Miles above Junction of Old	Large	Gravel	Med	ium Gra	vel	Fine (Gravel J. S. Bu	Coarse reau of l	Sand Soils Cla	Mediur ssificatio	n Sand n)	Fine	Sand	Very Fine Sand	Si	lt	Clay
and Miss. Rivers							Size	of openi	ng in m	m.							
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004 0.00
							Red	River	-Continu	ied.							
$\begin{array}{c} 20\\ 23\\ 23A\\ 25\frac{1}{2}\\ 29\\ 30\frac{1}{2}\\ 34\frac{1}{2}\\ 34\frac{1}{2}\\ 35\\ 35\frac{1}{2}\\ 36\frac{1}{2}\\ 36\frac{1}{2}\\ \end{array}$			100.0	99.9	99.8	100.0 100.0 100.0 99.7	100.0 99.9 99.9 99.9 99.9 99.8 99.6	$ \begin{array}{c}$	99.8 100.0 99.9 99.8 99.8 99.8 99.7 97.7 97.7 99.9	99.2 99.9 99.9 99.8 99.7 99.5 90.2 99.9	98.5 95.8 99.8 99.7 99.5 99.3 73.0 99.9	$\begin{array}{c} 97.6\\ 52.5\\ 99.7\\ 99.4\\ 89.0\\ 97.2\\ 23.9\\ 99.8 \end{array}$	$\begin{array}{c} 95.8 \\ \hline 73.3 \\ 88.7 \\ 97.1 \\ 42.5 \\ 99.0 \\ 44.3 \\ 11.9 \\ 48.3 \\ 4.2 \\ 51.7 \end{array}$	$\begin{array}{c} 94.0\\ 97.3\\ 63.7\\ 80.4\\ 94.3\\ 40.6\\ 57.5\\ 11.1\\ 1.3\\ 12.7\\ 0.6\\ 27.0\\ \end{array}$	91.5 95.4 45.3 78.8	73.4 56.3 19.3 40.3	

Miles a bove Mouth of	Large Gravel	Medium Gravel	Fine Gravel (U. S. Bure	Coarse Sand eau of Soils Cla	Medium Sand ssification)	Fine Sand	Very Fine Sand	Silt	Clay
Old River			Size o	of opening in m	m,				
	$38.10 \mid 13.33$	6.680 3.327 2.362	1.651 1.168	0.833 0.589	$0.417 \mid 0.295$	0.208 0.104	0.074 0	$0.040 \mid 0.008$	$0.004 \mid 0.001$
				Old River.					
14 12 1	100.0	$\begin{array}{c ccccc} 97.0 & 95.9 & 95.3 \\ 100.0 & 99.9 & 99.9 \end{array}$	$\begin{array}{ccc} 94.9 & 94.3 \\ 99.8 & 99.8 \end{array}$	$\begin{array}{c c} 93.7 \\ 99.5 \\ 94.2 \end{array}$	$\begin{array}{c c c} 61.5 & 15.1 \\ 39.8 & 5.0 \end{array}$	$\begin{array}{c c}2.6 & 0.1 \\0.7 & 0.2\end{array}$	$\begin{array}{c c} 0.0 \\ 0.1 \\ 87.9 \end{array}$	81.4 55.7	45.5
$1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{3}{4}$		100.0 99.8 99.7	$\begin{array}{cccc} 100.0 & 99.9 \\ 99.6 & 99.5 \\ 100.0 & 99.9 \end{array}$	99.9 99.0 99.3 98.0 99.9 99.5	$\begin{array}{c cccc} 77.0 & 16.7 \\ 88.6 & 50.0 \\ 94.9 & 75.4 \end{array}$	$\begin{array}{c cccc} 1.5 & 0.1 \\ 5.2 & 0.2 \\ 26.4 & 0.2 \end{array}$	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.2 \end{array}$		
3 4 5		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 97.0 & 94.9 \\ 98.0 & 96.7 \\ 99.9 & 99.8 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 17.8 & 6.0 \\ 9.5 & 7.2 \\ 75.4 & 29.1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c} 6 \\ 7 \\ 7 \frac{1}{2} \end{array} $			99.9 99.9	99.8 99.7 100.0 99.9	98.7 87.7 99.8 97.4	$\begin{array}{c c} 56.3 & 1.5 \\ \hline 24.1 & 1.3 \end{array}$	0.3 93.5 0.6	81.7 54.8	43.0

*See also Table 42.

.0

×.

TABLE 40-Continued.

Mechanical Analyses of Material from Bed of Tributary and Outlet Rivers.*

Accumulative Per Cent Finer

Miles below	Large	Gravel	Med	ium Gra	vel	Fine (U	Fravel S. Bur	Coarse eau of S	Sand oils Clas	Mediun sificatio	n Sand 1)	Fine	Sand	Very Fine Sand	Si	lt	Cla	ıy
falava River							Size of	opening	in mm.									
10.000 - 01 - 01	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0,208	0.104	0.074	0.040	0.008	0.004	0.001
			5,000,00,000					Atchafal	laya Riv	ver.								
2 1/2		100.0	98.2	98.0	97.9	97.9	97.8	97.7	94.5	63.8	24.4	$\begin{array}{c} 6.9\\99.0\end{array}$	$\left \begin{smallmatrix} 0.7 \\ 60.4 \end{smallmatrix} \right $	$\begin{array}{c c} 0.2 \\ 42.1 \\ 86 \end{array}$	$\begin{bmatrix} 24.3 \\ 69.1 \end{bmatrix}$	10.8 19.5	$7.9 \\ 13.7$	*****
3 3 5 1/2 5		100.0	98.2	$\begin{array}{c}100.0\\94.3\end{array}$	99.9 92.2 100.0	99.9 90.5 99.9	$99.8 \\ 88.1 \\ 99.9$	99.8 86.8 99.8	$99.4 \\ 79.5 \\ 99.5$	$94.2 \\ 72.1 \\ 97.2$	$67.6 \\ 66.7 \\ 80.3$	$40.8 \\ 56.3 \\ 54.3$	$25,9 \\ 37.1 \\ 26.1$	$\begin{array}{c} 30.3\\ 21.2\\ 32.2\\ 21.4\\ \end{array}$				
			100.0 100.0	99.9 99.8 100.0	99.9 99.6 99.9	$99.6 \\ 99.1 \\ 99.9$	$99.4 \\ 97.8 \\ 99.8$	$99.3 \\ 96.1 \\ 99.8$	$97.6 \\ 84.7 \\ 96.2$		$55.9 \\ 40.9 \\ 23.9$	$22.1 \\ 24.0 \\ 14.7 \\ 99.6$	$ \begin{array}{r} 9.1 \\ 14.7 \\ 8.8 \\ 42.0 \end{array} $	$7.8 \\ 11.6 \\ 7.9 \\ 31.4$	23.6	11.4	7.7	
1234 13 1512 1634					100.0 100.0	99.9 99.9	99.9 99.9	$\begin{array}{c} 99.8\\99.1\end{array}$	99.6 83.3	92.5 56.8	$\begin{array}{c} 49.4\\ 42.8\end{array}$	$\left \begin{array}{c}19.5\\31.6\\\end{array}\right $	$\begin{smallmatrix}1.4\\19.0\\$	$\begin{array}{c} 0.4 \\ 10.2 \\ 93.0 \\ 95.4 \end{array}$	86.9 90.9	56.2 64.4	$35.9 \\ 50.0$	
$17\frac{1}{2}$ $18\frac{3}{4}$ $20\frac{3}{4}$ $22\frac{3}{4}$					100.0	99.9	99.9	99.8	99.3	90.8	49.1	$\begin{array}{c} 15.4\\99.7\end{array}$	$3.8 \\ 77.4 \\ 80.2$	$3.2 \\ 52.6 \\ 68.0 \\ 95.5 $	44.0 33.0 88 5	22.1	16.8 63.7	
23^{-4} $24\frac{1}{2}$ $24\frac{3}{4}$ $27\frac{1}{2}$	100.0	72.7	$\begin{smallmatrix} 51.5\\100.0 \end{smallmatrix}$	$44.1 \\ 99.9 \\ 100.0$	$ \begin{array}{r} 41.3 \\ 99.7 \\ 99.9 \end{array} $	$39.1 \\ 99.3 \\ 99.8$	$36.8 \\ 97.8 \\ 98.6$	$35.6 \\ 95.9 \\ 94.4$	$31.0 \\ 83.4 \\ 76.9$	$21.6 \\ 42.0 \\ 54.5$	$11.6 \\ 13.5 \\ 34.0$	$\begin{array}{c c} 4.9 \\ 4.5 \\ 21.5 \end{array}$	$ \begin{array}{c} 1.1 \\ 0.2 \\ 16.4 \end{array} $	$ \begin{array}{r} 0.9 \\ 0.1 \\ 16.0 \\ \end{array} $			 	
2472 29 3214 3214 A			100.0	98.9	97.9	96.8	95.8	95.2	91.5	76.5	99.9 60.6	$\begin{array}{r}99.1\\48.2\end{array}$	$\begin{array}{c} 50.6\\ 36.7\end{array}$	$ \begin{array}{r} 91.8 \\ 36.9 \\ 35.3 \\ 92.8 \end{array} $		13.9 	11.1 63.9	
33 331/2 361/2 37		100.0	$\begin{array}{c} 99.3 \\ 100.0 \end{array}$	$96.2 \\ 99.8$	90.0 99.7	$\begin{array}{c} 77.6\\99.7\end{array}$	$\begin{array}{c} 61.4\\99.3\end{array}$	$\begin{array}{r} 48.7\\98.4\end{array}$	$\begin{array}{c} 31.8\\ 88.5 \end{array}$	$\begin{array}{c} 23.9\\62.9\end{array}$	22.6 48.3	$22.1 \\ 34.7 \\ 45.4$	21.2 19.4	$ \begin{array}{c} 20.7 \\ 14.3 \\ 98.5 \\ 44.7 \end{array} $	93.9	73.5	50.6	117 pp at at at at the factor
$39 \\ 39 \\ 39 \\ 41 \\ 41$			100.0	99.9	99.9	99.8	99.5	99.4	98.4	79.2	52.1	45.4 96.5	44.7 66.1	$ \begin{array}{c} 44.7 \\ 81.7 \\ 50.7 \\ 99.0 \end{array} $	$ \begin{array}{r} 66.2 \\ 34.5 \\ 95.6 \end{array} $	$40.8 \\ 13.2 \\ 86.6$	$ \begin{array}{c} 29.5 \\ 9.2 \\ 67.8 \end{array} $	
$4294 \\ 45 \\ 4834 \\ 5014$			100.0	99.9	99.8	99.8	99.7	99.6	98.3	88.6	56.4	36.3	32.3	$ \begin{array}{c c} 88.9 \\ 96.0 \\ 31.5 \\ 02.1 \end{array} $	85.4 88.1	76.8 71.8	64.2 57.7	23.9
5312 56						100.0	99.9	99.9	99.5	88.7	53.4	17.2	2.8	2.5	00.0		00.0	1

*See also Table 42.

3 '2

	TABLE 40	Continued.	
MECHANICAL ANALYSES OF	MATERIAL FROM	BED OF TRIBUTARY	AND OUTLET RIVERS.*

£ 7

Accumulative Per Cent Finer

Miles below Head of Atcha-	Large	Gravel	Me	dium Gr	avel	Fine	Gravel U. S. Bı	Coars reau of	e Sand Soils Cla	Mediur ssificatio	n Sand n)	Fine	Sand	Very Fine Sand	si	lt	Clay
falaya River							Size o	of openin	g in mm								
	38.10	13.33	6.680	3.327	2.362	1.651	1.168	0.833	0.589	0.417	0.295	0.208	0.104	0.074	0.040	0.008	0.004 0.001
							Atchai	alaya R	iver.—C	ontinued							
$58\frac{1}{2}\\60\frac{3}{4}\\63\frac{1}{4}\\65\\66\frac{1}{4}\\67\frac{1}{2}$			100.0	99.9 100.0 100.0	98.3 99.8 99.9	97.2 99.5 99.9	95.1 98.0 99.5	93.1 95.5 98.9	$ \begin{array}{c} 68.6\\ 64.9\\ 86.9\\ \end{array} $	38.4 32.3 30.7	99.0 26.7 29.2 3.5 99.1	90.521.127.61.696.0	$34.2 \\ 18.5 \\ 13.3 \\ 1.1 \\ 50.5$	97.9 29.8 18.0 4.8 0.4 93.2 49.0	92.6 26.9 89.8 47.8	86.2 21.3 84.9 45.3	67.4 13.2 76.4 38.0
							Lit	tle Atch	afalaya	River.							
$ \begin{array}{c} 68 \\ 69 \\ 70 \frac{1}{2} \end{array} $			· · · · · · · · · · · · · · · · · · ·		100.0	99.9	99.7	99.3	84.7	33.8	10.6	6,1	4.6	$ \begin{array}{r} 80.0 \\ 77.1 \\ 4.5 \end{array} $	$\begin{array}{c} 69.4 \\ 71.5 \end{array}$	60.9 61.4	53.7 50.7
							U	pper Gra	and Riv	er.							
$68\frac{3}{4}$ $69\frac{1}{4}$ $70\frac{1}{4}$ 72	100.0	95.8	95.1	94.5	94.1	100.0 93.9	$99.9 \\ 92.9$	99.9 90.4	$\begin{array}{c} 99.4\\ 60.6\end{array}$	$\begin{array}{c}92.4\\11.4\end{array}$	$\begin{array}{c} 71.9 \\ 4.4 \end{array}$	$\begin{smallmatrix}17.3\\2.3\end{smallmatrix}$	$\begin{array}{c} 0.4\\ 0.9\end{array}$	$90.5 \\ 0.2 \\ 0.8 \\ 87.8$	88.1	78.1	66.0 63.1
73 7334 7614 79		MA part car bit max bit max Add (de) MA (de) (de) MA (de) (de) </td <td></td> <td>100.0</td> <td>99.9 100.0</td> <td>99.9 100.0 99.9</td> <td>99.8 99.9 99.9</td> <td>99.8 99.9 99.8 100.0</td> <td>$99.7 \\ 99.7 \\ 99.8 \\ 99.9 \\$</td> <td>97.6 94.9 99.6 99.8</td> <td>55.5 47.9 97.2 98.1</td> <td>$10.1 \\ 14.1 \\ 31.1 \\ 71.4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$</td> <td>$0.1 \\ 0.5 \\ 1.2 \\ 2.6 \\ 0.5$</td> <td>$\begin{array}{c} 0.1 \\ 0.2 \\ 0.4 \\ 0.6 \\ \end{array}$</td> <td></td> <td>0 44 pc 46 pc 46 pc 10 44 44 pc 46 pc 46 pc 10 44 46 46 46 46 46 46 10 44 46 46 46 46 46 46 10 44 46 46 46 46 46 46</td> <td></td>		100.0	99.9 100.0	99.9 100.0 99.9	99.8 99.9 99.9	99.8 99.9 99.8 100.0	$99.7 \\ 99.7 \\ 99.8 \\ 99.9 \\ $	97.6 94.9 99.6 99.8	55.5 47.9 97.2 98.1	$10.1 \\ 14.1 \\ 31.1 \\ 71.4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$0.1 \\ 0.5 \\ 1.2 \\ 2.6 \\ 0.5 $	$ \begin{array}{c} 0.1 \\ 0.2 \\ 0.4 \\ 0.6 \\ \end{array} $		0 44 pc 46 pc 46 pc 10 44 44 pc 46 pc 46 pc 10 44 46 46 46 46 46 46 10 44 46 46 46 46 46 46 10 44 46 46 46 46 46 46	
$82 \\ 85 \\ 88^{1/2} \\ 91 \\ 921 \\ ($						100.0	99.9	100.0 99.9 100.0	99.9 99.8 99.9	99.9 99.5 99.9	99.8 97.6 99.8	$98.3 \\ 91.4 \\ 98.9$	$8.2 \\ 35.6 \\ 4.9 \\$	$ \begin{array}{r} 1.3 \\ 30.2 \\ 0.6 \\ 91.6 \\ 94.4 \\ \end{array} $	85.9	62.9	44.8
9372 94			***				L	ower Gr	and Riv	er.				91.0	77.8	43.8	28.9
98 104		44 pt 10 Vo 10 In 10	17 Jan 10 17 15 15 No ao 16 16 16 16 16	***		al an an to to to to Maria Ar is no to to to	ale the second are an an		100.0	99.9	99.0	$\begin{smallmatrix} 64.5\\100.0 \end{smallmatrix}$	$rac{46.1}{89.5}$	$\begin{array}{c} 40.2 \\ 74.2 \end{array}$	63.6	22.8	

*See also Table 42.

×

-6

TABLE 40-Continued.

Mechanical Analyses of Material from Bed of Tributary and Outlet Rivers.*

Accumulative Per Cent Finer

Miles below	Large Gravel	Medium Gravel	Fine Gravel (U. S. Bu	Coarse Sand reau of Soils Class	Medium Sand sification)	Fine Sand	Very Fine Sand	Silt	Clay
falaya River	28 10 12 22	1 8 880 1 9 907 L 0 980	Size	of opening in mi	m.	0 202 0 101	0.074	0.040 0.000	0.001 1.0.001
	38.10 + 13.33	6.680 3.327 2.362	1.651 + 1.168	0.833 0.589	0.417 ± 0.295	0.208 + 0.104	0.074	0.040 + 0.008	$0.004 \mid 0.00$

Atchafalaya Basin.

(Lower Grand River Route.)

111] = = = = = = = =		 	 		 100.0	91.7	88.0	74.8	35.7	
118		 			 0. M = 1 = 2 = 2	 	-	 100.0	98.9	98.0	94.6	69.5	
$132\frac{1}{2}$		 		77 JP 18 P1 77 M 87	 	 ****		 99.5	92.9	91.3	87.5	73.0	58.2 32.7
$139\frac{1}{2}$	No	 			 	 100 We at 100 Mar 100 101		 	100.0	93.4	86.3	66.1	
141		 		APR 104 107 108 108 107 107	 	 	10 to 10 10 10 all 10	 100.0	91.4	82.6	75.6	60.7	
143		 			 PT - 01 - 18 - 10 - 10 - 10 - 10	 		 100.0	96.7	94.9	88.9	69.0	
1471/2		 			 	 		 		100.0	97.9	82.2	

(Bayou La Rompe, Lake Chicot, and Grand Lake Route.)

71			100.0	99.7	1 99.6	99.6	99.4	99.3	95.9	78.5	40.9	16.6	1.6	0.5				
72			100.0	99.9	99.9	99.8	99.8	99.7	98.0	78.6	35.1	6.3	0.1	0.1				
7216	100.0	97.3	96.9	96.7	96.5	96.2	95.5	94 2	84 0	51.1	18.3	3.0	0.1	0.1			1	
7332	10010		100 0	00.8	00 7	00.6	00 5	00.0	04 7	62.6	17 7	2.0	0.4	0.4		14 AV 11 10 10 10 10		
7412		· · · · · · · · · · · ·	100.0	00.0	00.1	00.0	100.0	00.0	05 7	62.0	10 1	2.0	0.1	0.4				
7422				21. 20. 20. 20. 20. au		100 0	100.0	99.9	90.7	00.1	10.4	0.4	0.1	0.1				$= \cdots - \sim \cdot$
76				** ** ** ** ** ** **	700 0	100.0	99.9	99.9	98.0	70.6	19.3	2.2	0.1	0.1	340 47 47 44 47 44 44			
$76\frac{1}{2}$			AP 10 10 AR 44 AV 14	10 00 00 00 10 10 10	100.0	99.9	99.9	99.8	97.9	63.8	23.0	1.7	0.1	0.0	An an an an an ar an			
78				** ** ** ** ** **			100.0	99.9	99.8	97.9	80.1	22.7	0.3	0.1				
$79\frac{1}{6}$							100.0	99.9	99.9	98.9	63.4	11.4	0.1	0.1				
7984							100.0	99 9	99.7	95.8	81.6	23 7	1.4	0.2				
82					1	No. 101 101 101 101 101 100 101	100.0	000	90.0	99.5	75 1	18 1	1 2	ň ž		the age of the set of the set		
96	2020202		// W I/ / A V V			100 0	00.0	00.0	00.9	00.7	08.0	45 0	0.0	0.2			m m m h n n h n n	****
00			~~~~~~			100.0	33.5	39.9	35.0	99.1	30.3	40.0	0.9	0.5	00 1	00.0		
88			an an in a co an in			~ = = = = = =	~~~~~~			$m^{\prime} = m = m = m = m = m$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~		87.4	85.1	08.8	01.2	
89								~ ~ ~ ~ ~ ~ ~ ~	*****	1.0 (100 col 100 col 100 col 100	~~~~~~~	100.0	98.1	96.9	95.1	92.6		
903/4									******			100.0	93.6	86.1	71.7	39.2		
$92\frac{3}{4}$					~~~~~~	~~ ~ ~ ~ ~ ~ ~ ~						100.0	94.3	92.9	88.0	77.3		
95												100.0	93.6	90.8	81.6	51.5		
08 0													0.91.0	74 5	65 9	51 2	46 0	
0014	10 A 10 M 10 H 10 W	14 14 15 16 16 16 16 16				~~~~~			4- 4- 40 MI - 4- 4- 1-	10 10 10 10 10 10 10 10				100.0	00.6	66 5	10.0	a a a a a a a a a
104			117 as at \$5 as \$5 be			And Mrs. 546 and and p.5 ark		~~~~~~	***		APP 101 102 102 102 102 102	****	00 1	100.0	70.4	50.5	N	
104			THE 168 APP INC 168 APR 169		~ ~ ~ ~ ~ ~ ~	-10 -10 -10 -10 -10 -10 -10			*****	14 14 10 10 10 10 10 10	******		89.1	.04.0	19.4	30.3	~~~~~~	
107 2							107 per 108 av 109 tot 10		*****					100.0	97.8	87.0		
$110\frac{1}{2}$														100.0	97.6	92.8		
114							17 Th 10 M Th 10 M			***			100.0	97.1	94.5	56.4		P1 10 10 10 100 100 17
119						17 IN 18 AN 18 IN 14								100.0	97.7	86.8		100 pz 100 100 100 100

12

130

*See also Table 42.

4 H

TABLE 40-Continued.

x

×.

MECHANICAL ANALYSES OF MATERIAL FROM BED OF TRIBUTARY AND OUTLET RIVERS.*

Accumulative Per Cent Finer

Miles below	Large Gravel	Medium Gravel	Fine Gravel (U. S. Bu	Coarse Sand reau of Soils Clas	Medium Sand sification)	Fine Sand	Very Fine Sand	Silt	Clay
falaya River			Si	ze of opening in a	mm.				
	$38.10 \mid 13.33$	6.680 + 3.327 + 2.362	1.651 1.168	0.833 0.589	0.417 ± 0.295	0.208 0.104	0.074	$0.040 \mid 0.008$	$0.004 \mid 0.001$

Atchafalaya Basin .--- Continued.

(Bayou L'Embarras, Lake Fausse Point, and Grand Lake Route.)

7516	1	1	 			1	100).0	99	9.9	99	9.9	1 99	9.7	94	.4	46.8	1	9.8	1.8	0.6	0.6			
76											100	0.0	99	9.8	97	.8	63.6		12.3	1.2	0.1	0.0			
82			 						100	0.0	99	9.9	99	9.9	- 99	.9	96.7		49.1	9,2	0.4	0.1			
83			 																		100.0	92.4	80.8	54.8	 ******
841/2			 100	.0	- 99	.9	- 99	9.8	- 99	9.8	99).7	9	9.6	- 99	. 5	-98.8		88.8	24,2	0.4	0.1	17 10 10 10 10 10 10 10	AN 147 17 19 19 19 19 19	
86			 		~ ~ ~ ~ ~				~~~											100.0	81.7	78.2	76.4	65.6	
871/2			 		-		-								· · · · ·					100.0	95.1	92.1	89.8	80.8	
90 ~			 	~ ~							100).0	91	9.9	- 99	.8	99.6		99.3	95.0	36.1	30.6			
931/2			 						100).0	99	9.9	99	9.9	- 99	.9	99.8		99.7	88.2	16.6	13.1			
9512			 		-																*****	100.0	98.5	75.7	
98			 											a w 94	-						100.0	98.7	94.3	74.8	
99			 		-										****						100.0	96.1	92.6	70.2	
103			 													~ ~ ~		~ ~ ~		100.0	98.8	97.5	91.5	33.4	
$105\frac{1}{2}$			 									-									100.0	98.8	97.4	82.6	
107			 																		*****		100.0	83.0	

*See also Table 42.

÷

ŝ.

PHYSICAL DATA AND VARIOUS CONSTANTS OF MATERIAL FROM BED OF MISSISSIPPI RIVER*

Miles Locality Specific Gravity Metan Gravity Metan mat ^{bes} Metan Gravity Uniformity Gravity 2 Cairo Point 2.66 2.384 1.218 0.1470 6 Port defferson 2.66 2.384 1.218 0.1470 7 Origonia 2.66 1.386 0.533 0.1688 10 Foot Toe Heard Island No. 1 2.663 1.386 0.533 0.1688 12 Campbell's Landing 2.76 0.750 0.200 0.6054 134 Head of Island Nos. 3 and 4 2.663 1.776 0.515 0.16054 1942 Crute of Island Nos. 5 and 4 2.663 2.098 0.6759 0.2706 2114 Head of Will Saland No. 5 2.4717 0.6053 0.6759 0.2706 22154 Head of Will Saland No. 5 2.665 1.776 0.576 0.2706 22154 Head of Will Saland No. 5 2.651 1.0930 0.6750 0.2705 22154 Head of Will Saland No. 8						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Miles Below Cairo	$\operatorname{Localit}_{\mathbf{y}}$	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm***	Uniformity Modulus M**
	9	Cairo Point	2.66	2.384	1.218	0.1470
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Port Jefferson	2.66	†	†	+
$ \begin{array}{c} 10 & Foot Tow Head Island No. 1$	7	Norfolk Landing	2.73	0.358	0.340	0.6364
	10	Foot Tow Head Island No. 1	2.63	1.136	0.533	0.1688
$ \begin{array}{c} 13 \\ 14 \\ 15 \\ 14 \\ 16 \\ 14 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$	12	Campbell's Landing	2.60	11.845	1.277	0.0224
	13	Head of Islands Nos. 3 and 4.	2.00	8 703	0.552	0.1390
	14	Bryan Landing	2.73	0.209	0.200	0.6679
$ \begin{array}{c} 1915 \\ 1$	1616	Crosno, Mo.	2.65	7.765	0.965	0.0054
	1914	Foot of Islands Nos. 3 and 4	2.66	2.098	0.769	0.1310
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$19\frac{1}{2}$	Chute of Islands Nos. 3 and 4 below dredge	0.00	1 550	0.515	0 1010
$ \begin{array}{c} 1 \\ 2224 \\ 2234 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2245 \\ 2244 \\ 2245 \\ 2244 \\ 2245 \\ 2245 \\ 2244 \\ 2245 \\ 2244$	61	cut.	2.05	1.770	0.315	0.1010
$ \begin{array}{c} 232 \\ 252 $	21	Head of Wolf Island No. 5	2.00	12 732	9 897	0.1202
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{2272}{9312}$	Chalk Bluff	$\tilde{2}, \tilde{6}2$	3.539	0.655	0.0685
	25 2	1 mile below Chalk Bluff	2.66	2.013	0.580	0.0735
	27	3 miles below Chalk Bluff	2.62	3.552	1.591	0.1316
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$29\frac{1}{2}$	Medley Landing	2.65	0.712	0.647	0.5371
	31	Medley Crossing	2.63	1.093	0.776	0.3004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32	Lower end of Medley Crossing	2.00	0.804	0.490	0.2829
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80 2714	1 mile below Hickman, Ky.	2.62	6.484	1.531	0.0592
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3814	3 miles below Hickman, Ky,	2.58 + 1	23.16	22.49	0.3857
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	Henderson Point Landing	2.63	1.236	0.59	0.2096
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	43	Head of Island No. 8	2.65	0.921	0.540	0.2528
	44	James Bayou Crossing	2.65	0.356	0.349	0.6545
	441/4	Three States Landing	2.65	0,428	0.365	0.5507
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	481/2	11/2 miles above root of Island No. 8	2.65	0,449	0.561	0.3900
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5516	Lester Landing	2.65	0.785	0.492	0.3008
	56	Donaldson Crossing	2.65	0.389	0.277	0.3487
	$56\frac{1}{4}$	Donaldson Point	2.65	0.388	0.345	0.4795
	60	Slough Landing	2.66	2.697	0.818	0.0914
65 La Forge Landing 2.60 4.137 2.240 0.1173 70 Morrison Tow Head 2.65 0.933 0.581 0.2880 714 1 mile below New Madrid, Mo. 2.63 1.691 0.644 0.1438 7642 Head of Island No. 11. 2.63 1.286 0.902 0.3226 784 Toneys Tow Head. 2.63 1.406 0.886 0.2594 807 Foot of Toneys Tow Head. 2.65 0.679 0.471 0.4436 814 Point Pleasant Crossing 2.65 0.802 0.588 0.3184 814 Imile below Burrus Landing 2.65 0.805 0.588 0.3438 91 Cherokee Landing 2.65 0.805 0.588 0.3438 91 Cherokee Landing 2.665 0.829 0.683 0.447 94 Head of Joe Eckles Tow Head 2.66 0.828 0.639 0.336 92 Stewart Bar Crossing 2.66 0.829 0.683 0.477 94 Head of Liand No. 14 2.66 0.2027	61	Cates, Tennessee	2.65	0.586	0.263	0.2193 0.1175
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00 70	La Forge Landing	2.60	4.107	2.240	0.1175
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71	1 mile above New Madrid, Mo.	2.58	5.878	1.616	0.0569
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	721/5	1 mile below New Madrid, Mo.	2.63	1.691	0.644	0.1438
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$76\frac{1}{2}$	Head of Island No. 11	2.63	1.286	0.902	0.3226
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	78	Toneys Tow Head	2.65	0.960	0.598	0.3184
81 Fourt Fleasant Crossing 2.65 0.362 0.364 0.3436 91 Cherokee Landing 2.65 0.884 0.679 0.3336 0.447 94 Head of Joe Eckles Tow Head 2.66 0.884 0.679 0.3936 98 Head of Island No. 14 2.66 0.027 22.683 0.2741 0.4436 10014 Reelfoot, Tennessee 2.66 0.328 0.318 0.6234 0.690 0.1696 1061 Imile above Fritz Landing 2.66 1.628 0.669 0.1691 108 I mile below Gayoso, Mo. 2.663 1.649 0.695 0.1611 108 Caruthersville, Mo. 2.665 0.785 0.523 0.2685 0.232	80	Foot of Toneys Tow Head	2.03	1.400	0.880	0.2594
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	81	Foint Fleasant Crossing	2.65	0.802	0.334	0.3340
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	881/	1 mile below Burrus Landing	2.65	0.805	0.588	0.3438
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91	Cherokee Landing	2.58	5.693	1.332	0.0586
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	92	Stewart Bar Crossing	2.65	0.829	0.683	0.447
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	94	Head of Joe Eckles Tow Head	2.65	0.884	0.679	0.3936
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1001/	Head of Island No. 14	2.60	20.027	22.683 0.218	0.2741
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$100^{5/2}$	L mile above Fritz Landing	2.60	4 132	1 008	0.0204
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	106	Sandy Hook Crossing	2.63	1.628	0.669	0.1696
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1061/2	Sandy Hook Crossing	2.63	1.469	0.695	0.1611
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	108	1 mile below Gayoso, Mo.	2.63	1.041	0.687	0.3192
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	113	Caruthersville, Mo.	2.66	2.146	0.956	0.1827
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113/2	2 miles below Caruthersville, Mo.	2.04	8.705	4.096	0.0477
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	128	2 miles above head of Island No. 21	2.65	0.548	0.474	0.2000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1311/2	Huffman, Ark.	2.65	0.651	0.519	0.4441
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	137	Hales Point Landing	2.62	6.047	1.683	0.0575
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	138	Tamm Landing	2.65	0.781	0.565	0.3832
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	141 1/2	Barr Landing	2.62	3.150	1.019	0.1110
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	142	2 miles shove Barfield Point Ark	2.05	3 306	1 858	0.1966
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	146	Barfield Point, Ark.	2.65	0.601	0.544	0.5331
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1501/2	Head of Forked Deer Island No. 26	2.65	0.936	0.654	0.3107
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$155\frac{1}{4}$	Ashport, Tenn.	2.70	3.212	0.768	0.0782
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$159\frac{1}{2}$	Gold Dust Landing	2.63	1.115	0.723	0.2594
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1601/2	I mile above Keyes Point Landing	2.63	1.005	0.626	0.2944
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16334	Head of Island No. 30	2.63	1 149	0.572	0.2817
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1708/	Head of Vankee Bar	2 65	0 919	0 546	0 2813
176 1 mile below Fulton, Tenn. 2.65 0.343 0.335 0.6164	17216	Flour Island Bar	2.65	0.890	0.652	0.3384
	176	1 mile below Fulton, Tenn.	2.65	0.343	0.335	0.6164

*These data concern the same samples of bed material listed in Table 39. **See page 5 for discussion of these values. †Not computed for silt and elay samples. See Table 39 for size distribution. ††Sandstone, porous chert, and poor shale.

TABLE 41-Continued

Physical Data and Various Constants o	MATERIAL FROM	BED OF MISSISSIPPI RIVER*
---------------------------------------	---------------	---------------------------

				1	
Miles Below Cairo	Locality	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
			Addahaanna 1999 (2002) aanaa aanaa a		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1781/2	Lookout Landing	2.63	1,483	0.699	0.2101
18134	Randolph Landing	2.63	1.647	0.843	0.2033
$182\frac{3}{4}$	Randolph, Tenn,	2.65	0.558	0.452	0.1593
$186\frac{1}{2}$	Head of Island No. 35	2.64	8.086	0.537	0.0245
194	2 miles above Foot of Island No. 35	2.63	1.312	0.698	0.2542
195	1 mile above Foot of Island No. 35	2.65	0.880	0.595	0.3266
200	Dean Island Landing	2.65	0.550	0.434	0.3804
2011/2	Happy Valloy Croceing	2.02	0.943	0.682	0.3767
200	Mouth of Old River Landing	2.62	3.207	0.831	0.0899
210%	Island 39 Landing	2.65	0.594	0.539	0.5660
2151/2	Island 40 Landing	2.65	0.733	0.562	0.4005
$219\frac{1}{4}$	Head of Redman Point Bar	2.65	0.373	0.362	0.6358
$221\frac{1}{2}$	5½ miles above Memphis, Tenn.	2.65	0.805	0.302	0.1391
225	2 miles above Memphis, Tenn.	2.05	0.497	0.407	0.0470
229	I mile below bridge at Mempins, 1 enn.	2.00	3 3 2 5	0.400	0.0529
230	Head of Bauxinni Revetment	2 65	0 488	0 471	0.6258
23634	Foot of President's Island	2.65	0.376	0.365	0.673
241	Josie Harry Tow Head Crossing	2.65	0.543	0.482	0.5379
243	Armstrong Crossing	2.65	0.723	0.502	0.3315
244	Head of Island No. 48	2.65	0.662	0.533	0.4367
$247\frac{1}{2}$	96 Landing	2.65	0.508	0.473	0.5701
$249\frac{3}{4}$	Pinckney, Ark.	2.65	0.399	0.395	0.6133
2501/2	Pinckney Landing	2.00	0.371	0.304	0.0000
201 9513/	Opposite head of Cat Island	2.00	12 964	10 416	0.0600
2591/	Harklerodes Landing	2.63	1.062	0.613	0.2800
25216	Head of Cat Island Tow Head	2.63	1.192	0.646	0.2515
25314	Below head of Cat Island Tow Head	2.65	0.406	0.376	0.5782
254	Opposite center of Cat Island Tow Head	2.65	0.359	0.347	0.6226
$254\frac{1}{8}$	Opposite center of Cat Island Tow Head	2.65	0.814	0.571	0.2999
2541/4	Opposite foot of Cat Island	2.63	2.675 2.905	0.823	0.0938
254 1/2	Star Landing	2.62	1 363	0.940	0.3177
204%A 9543/D	Opposite foot of Cat Island Tow Head	2.65	0.689	0.446	0.2805
2547415	Just below Star Landing	2.63	1.420	0.584	0.1811
2551/2	New Channel, just below foot of Cat Island				
	Tow Head	2.65	0.685	0.522	0.3994
255%A	New Channel, 1/2 mile below foot of Cat Is-	0.05	0 520	0.400	0 5440
	land Tow Head	2.00	0.000	0.490	0.0440
255% B	¹ / ₂ mile below foot of Cat Island 10w Head	2.63	1 354	0.513	0.1597
250 1/4	114 miles above Sevenal Landing	2 65	0.838	0.775	0.4558
250 72	Sound Landing	2.65	0.649	0.513	0.4096
259	Bruins Landing	2.65	0.896	0.490	0.2383
2601/4	Bruins, Ark.	2.65	0.577	0.519	0.4522
$261\frac{1}{2}$	2 miles below Bruins Landing	2.65	0.482	0.375	0.3902
$263\frac{1}{4}$	1 mile above Commerce Landing	2.65	0.743	0.555	0.4014
2641/2	Commerce, Miss.	2.00	9 525	0.455	0.0875
266	Z miles below Commerce, Miss.	2.63	1.085	0.630	0.2635
20072	Mac Tow Head	2.63	1.725	0.493	0.0449
2691/	Head of Peter's Tow Head	2.65	0.409	0.369	0.5341
2701%	Peters Tow Head	2.65	0.552	0.511	0.5367
$271\frac{1}{2}$	1/2 mile below Lady Lee Landing	2.66	1.008	0.544	0.2569
$272\frac{1}{2}$	Ashley Point Landing	2.65	0.422	0.351	0.4774
272%	14 mile above Mhoon Landing	2.04	0.242	0.529	0.3036
273	Mhoon Landing	2.65	0.963	0.550	0.2616
273-A 9723/	1 mile below Mhoon Landing	2.63	1,916	0.441	0.0218
27974	Whitehall Landing	2.65	0.451	0.397	0.4706
2803	1 mile above Walnut Bend Landing	2.65	0.893	0.640	0.316
2811/2	Walnut Bend Landing	2.65	0.915	0.519	0.2816
2831/2	3 miles above Hardin Point Landing	2.65	0.602	0.526	0.4682
$286\frac{3}{4}$	Hardin Point Landing	2.65	0.900	0.807	0.5499
$287\frac{1}{4}$	I mile below Hardin Point Landing	2.65	0.523	0.470	0.5315
28914	O. K. Bend Urossing	2.65	0.655	0.565	0.5018
2921/2	1 mile below Harbert Landing	2.65	21,662	23.483	0.2375
293 2033/	Shoo Fly Bar	2.62	2.790	0.674	0.0919
296	Tate Landing	2.63	0.444	0.359	0.3314
2981/2	Mouth of St. Francis River	2.63	0.705	0.511	0.3592
300	2 miles below mouth of St. Francis River	2.65	0.785	0.670	0.3527

 30034
 Prairie Point
 2.65
 0.810
 0.

 *These data concern the same samples of bed material listed in Table 39.

 **See page 5 for discussion of these values.

2

\$

Miles Below Cairo	Locality	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
20114	Head of Prairie Point Tow Head	2.65	0.936	0,536	0.2536
30234	Nash Landing	2.65	0.503	0.480	0.5906
303 1/4	1 mile above Trotter Landing	2.65	0.385	0.362	0.6349
$303\frac{1}{2}$	¹ / ₂ mile above Trotter Landing	$\frac{2.65}{2.65}$	0.347 0.956	0.337	0.0428
303 3/4	¹ / ₂ mile above Trotter Landing	$\frac{2.65}{2.65}$	0.209	0.35% 0.198	0.6452
3063/	Helena, Ark.	2.65	0.553	0.532	0.6850
310	Head of Montezuma Bar	2.65	0.375	0.271	0.4155
31034	Williamson Landing	2.65	0.950	0.395	0.2792
313%	Stokes Landing	2.65	0.350	0.341	0.6444
31614	Delta Landing	2.65	0.681	0.553	0.4763
$317\frac{1}{2}$	1/2 mile above Friar Point, Miss.	2.65	0.545	0.366 0.510	0.3618
3211/2	Kangaroo Point Landing	2.65	0.375	0.519	0.2816
324/2	Head of Island No. 63	2.62	6.948	6.112	0.2094
330	Island 63 Crossing	2.65	0.577	0.548	0.6652
331	Opposite middle Island No. 63	2.65	0.476	0.469	0.6661
332	Foot of Island No. 63	$\frac{2.05}{2.65}$	0.541	0.295	0.3553
3337 337	1 mile below Fair Landing	2.62	1.005	0.707	0.3697
33834	1/2 mile below Rescue Landing	2.65	0.282	0.251	0.6113
$339\frac{1}{2}$	11/2 miles below Rescue Landing	2.65	0.341	0.308	0.5821
342%	Dawson Landing	2.65	0.334	0.312 0.250	0.6934
344	16 mile below Offutt Landing	2.63	1.617	1.004	0.1791
349	11/2 miles below Offutt Landing	2.65	0.486	0.357	0.3785
350	Cheek Landing	2.62	6.713	6.789	0.1614
351	Head of Island No. 60	2.65	0.411	0.588	0.5337
3521/2	1 ¹ / ₄ miles above Sunflower Landing	2.65	0.322	0.308	0.6380
353	1 mile above Sunflower Landing	2.65	0.502	0.422	0.4949
356	Malone Landing	2.65	0.927	0.631	0.3478
357 1/2	Anderson Landing	2.03	0 432	0.039	0.3671
360%	Ludlow Landing	2.66	2.976	0.885	0.0809
3621/2	Foot of Zenor Tow Head	2.65	0.510	0.453	0.4763
$363\frac{1}{4}$	Island No. 68	2.65	0.301	0.267	0.5570
3661/2	Beith Landing	2.00	0.586	0.350	0.4499
372	1 mile above Mason Landing	2.65	0.277	0.230	0.4414
37234	Mason Landing	2.65	0.568	0.353	0.1600
375	Laconia Landing	2.63	1.721	0.446	0.0889
376%	1½ miles below Laconia Landing	2.03 2.65	0.290	0.343	0.1314 0.5650
$37872 \\ 381$	Opposite Henrico, Ark	2.65	0.858	0.496	0.2384
382	1/2 mile above Scrubgrass Tow Head	2.65	0.268	0.242	0.5005
3901/2	1 mile above mouth of White River	2.65	0.291 0.247	0.200	0.3836
39122	14 mile below Mouth of White River Landing	2.65	0.264	0.248	0.5127
394	11/2 miles below White River gage	2.66	2.141	1.052	0.1370
395	1½ miles above Rosedale Landing	2.65	0.499	0.471	0.5208
396 206 1/	Rosedale Landing	2,65	0.493	0.475	0.5229
397	1 mile below Rosedale. Miss.	2.65	21.415	27.032	0.3152
3971/4	1 mile below Rosedale Landing	2.65	0.219	0.183	0.5405
3971/2	Head of Island No. 73	2.65	0.307	0.291	0.6104
397 ½A	Head of Island No. 73	2.65	0.647	0.414	0.3434
3981/	Foot of Island No. 73	2.65	0.256	0.228	0.3313
3981/2	Foot of Island No. 73	2.65	0.422	0.398	0.6279
399	1/2 mile above mouth of Arkansas River	2.65	0.257	0.239	0.6059
399%	Mouth of Arkansas River	2.00	0.232	0.220	0.0300
40115	1/2 mile below Prentiss Landing	2.60	16.668	16.795	0.2130
402	Ozark Landing	2.62	8.420	6.209	0.1676
403	1/2 mile below Ozark Landing	2.69	23.773	27.100	0.4585
404	1 mile above Indian Point Landing	2.63	0.323	0.481	0.2122
406	Monterey Landing	2.65	0.256	0.244	0.5867
$407\frac{1}{2}$	Caulk Neck	2.62	†	+	Ť
410	1 mile below Holly Ridge Landing	2.65	0.289	0.269	0.6330
4111/2	1/2 mile above Niblett Landing	2.63	7.858	1.541	0.032
41316	Island No. 76	2.65	0.748	0.438	0.2469
					NAMES OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.

Physical Data and Various Constants of Material from Bed of Mississippi River*

:95

ЫŔ.

*These data concern the same samples of bed material listed in Table 39. *See page 5 for discussion of these values. Not computed for silt and clay samples. See Table 39 for size distribution.

TABLE 41—Continued

Miles Below Cairo	Locality	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
416	Kentucky Landing	2.65	0.480	0.459	0.6005
419 420	Catfish Tow Head	2.65	$0.459 \\ 0.407$	$0.348 \\ 0.387$	$0.412 \\ 0.6120$
423	Island No. 77	2.65	0.384	0.300	0.4141
$424\frac{1}{2}$ $425\frac{1}{2}$	Lucca Landing De Soto Landing	$2.64 \\ 2.60$	$\overset{T}{4.204}$	0.655	0.0555
$426\frac{1}{2}$	Chicora Landing	2.70	1 100	0 100	a t.
428 429½	Chicot Landing	$\frac{2.05}{2.65}$	$0.428 \\ 0.533$	$0.420 \\ 0.481$	$0.5801 \\ 0.5192$
42934	Chicot Landing	$\frac{2.65}{2.65}$	0.371 12.100	0.319 12 227	0.4907
430%	Head of Choctaw Bar	2.65	0.809	0.587	$0.3052 \\ 0.3947$
433A 433B	Mound Crevasse	$2.65 \\ 2.62$	$0.291 \\ 3.282$	0.289 0.500	0.5410 0.0620
$433\frac{1}{2}$	1/2 mile below Mound Crevasse	$\tilde{2}.63$	1.292	0.486	0.1544
$435\frac{1}{2}$ $436\frac{3}{4}$	2 miles above Arkansas City	$\frac{2.65}{2.65}$	$0.336 \\ 0.250$	$0.327 \\ 0.237$	0.5080 0.523
4381/2	1½ miles below Arkansas City, Ark.	2.65	0.339	0.299	0.4510
$439\frac{1}{2}$ 441	2½ miles below Arkansas City, Ark.	$\frac{2.65}{2.65}$	0.288 0.790	0.284 0.212	$0.3504 \\ 0.0582$
4411/2	1/2 mile below Eunice Landing	2.65	0.539	0.467	0.4688
4421/2	Georgetown Crossing Georgetown Tow Head	$2.65 \\ 2.65$	$0.410 \\ 0.322$	$0.388 \\ 0.320$	$0.6824 \\ 0.6859$
447 1/2	Ashbrook Point Landing	2,66	2.479	0.805	0.1140
449 451 1/2	Panther Forest Landing	2.69	0.402	0.324 \dagger	0.4202
$452\frac{1}{2}$	Linwood Neck	2.65	0.447	0.443	0.6742
$454 \\ 454 \frac{1}{2}$	Yount Comfort Landing	$\frac{2.78}{2.62}$	6.622	5.508	0.1755
$455\frac{1}{2}$	11/2 miles below Point Comfort Landing	2.65	0.431	0.409	0.6485
$450\frac{1}{2}$ $457\frac{1}{2}$	Shadyside Landing	$\frac{2.65}{2.65}$	$0.405 \\ 0.845$	0.303 0.540	0.3080
459	3 miles above Tarpley Landing	2.60	10.247	5.097	0.0359
459 1/4 460 1/5	1 miles above Tarpley Landing	$\frac{2.65}{2.65}$	0.703	0.425 0.565	0.3257
$461\frac{1}{2}$	1/2 mile above Tarpley Landing	2.65	0.479	0.480	0.5992
$\frac{462}{464}$	1 arpley Landing 1/2 mile above Carter Point Landing	$2.62 \\ 2.65$	0.650	0.497	0.0435 0.435
464 1/4	Carter Point Landing	2.65	0.404	0.355	0.5391
$\frac{465}{2}$ 466	Linwood Landing	$\frac{2.65}{2.65}$	0.305	$0.304 \\ 0.289$	0.2950 0.648
$466\frac{1}{2}$	1 mile above Luna Landing	2.65	0.306	0.265	0.5371
468 46916	1 mile below Luna, Ark. 1 mile above Upper Leland Landing	$\frac{2.63}{2.63}$	1.101	$0.400 \\ 0.772$	0.2751 0.1382
$470\frac{1}{2}$	Upper Leland Landing	2.65	0.742	0.510	0.4053
$472\frac{1}{2}$ 474	Point Chicot Landing	$2.69 \\ 2.65$	0.902 0.506	0.772 0.489	0.5030 0.6417
475	1 mile below Point Chicot Landing	2.65	0.445	0.441	0.6479
475% 4761/	Lower side of Tarpley Neck	$2.60 \\ 2.65$	$\frac{2.285}{0.391}$	$0.308 \\ 0.371$	0.683
4771/2	2½ miles above Greenville, Miss.	2.65	0.433	0.284	0.3591
479% 481	Lower end of Greenville, Miss.	$\frac{2.65}{2.65}$	0.399 0.277	0.389 0.269	0.6182
48114	Lower end of Greenville, Miss.	2.66	8.782	5.083	0.0526 0.0252
$\frac{481}{4}$	2 miles below Greenville, Miss.	$2.65 \\ 2.65$	0.295	0.282	0.0333 0.6729
483	1/2 mile above Leland Neck Cut-off	2.65	0.385	0.367	0.6010
484 484 ¼	Foot of Lagrange Tow Head	$\frac{2.65}{2.66}$	10.794	10.720	0.5833
$484\frac{3}{4}$	Chute, back of Warfield Tow Head	2.66	2.642	1.575	0.214
485¼A 485¼B	Warfield Tow Head Chute, lower end of Warfield Tow Head	$2.65 \\ 2.64$	$0.552 \\ 8.429$	$\frac{0.511}{8.850}$	0.2732
486	Warfield Point	2.65	0.483	0.459	0.5449
487 48814 A	Leland Bar Bend, Upper end of Vaucluse Bar	$2.65 \\ 2.65$	0.604 0.303	$0.519 \\ 0.295$	0.3596
$488\frac{1}{2}B$	Upper end of Vaucluse Bar	2.65	0.556	0.507	0.5470
489 4891/	Head of Vaucluse Bar	2.65 2.68	0.429	0.369	0.5113
$489\frac{1}{2}$	Vaucluse Landing	2.65	0.319	0.285	0.5995
$\frac{489}{4}$	Vaucluse Bar Back of Vaucluse Bar	2.63 2.65	$1.991 \\ 0.285$	$0.482 \\ 0.271$	$0.1011 \\ 0.6747$
490½A	Foot of Vaucluse Bar	2.65	0.347	0.333	0.6081
490½B	Foot of Vaucluse Bar	2.65 2.65	$0.971 \\ 0.334$	$0.430 \\ 0.310$	0.2098
4911/4	Sunnyside Landing	2.65	0.323	0.308	0.6354

Physical Data and Various Constants of Material from Bed of Mississippi River*

à.e

79

τ

*These data concern the same samples of bed material listed in Table 39. **See page 5 for discussion of these values. †Not computed for silt and clay samples. See Table 39 for size distribution.

Physical Data and Various Constants of Material from Bed of Mississippi River*

-24

2

 \mathbb{S}_4

Miles Below Cairo	Locality	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
40012	14 mile above Refuge Landing	2.65	0.287	0.205	0.4119
492 /2 492 1%	1/2 mile below Refuge Landing	2.62	6.472	3.174	0.0957
40072	1 mile below Refuge Landing	2.62	6.816	3.032	0.0606
4941%	11/2 miles below Refuge Landing	2.65	0.830	0.439	0.2682
496	2 miles above Lakeport Landing	2.65	0.339	0.335	0.6423
497	1½ miles above Lakeport Landing	2.00	0.268	0.382	0.3044
498%	Lakeport Landing	2.65	0.803	0.539	0.3531
50114	1% miles above Longwood Landing	2.60	8.797	3.652	0.0492
502	1/2 mile above Longwood Landing	2.65	0.511	0.475	0.5554
$503\frac{1}{2}$	Stella Landing	2.65	0.463	0.391	0.4654
$505\frac{1}{2}$	Fanny Bullitt Tow Head	2.00 2.65	0.449	0.301	0.5739
507	Monewood Landing	2.65	0.566	0.494	0.4727
51016	Worthington Point	2.65	0.455	0.397	0.5533
51214	1 mile below Grand Lake Landing	2.65	0.271	0.253	0.5063
513	1 mile above Head of Cracraft Tow Head	2.65	0.253	0.246	0.6295
514	Head of Cracraft Tow Head	2.61	7 102	27.800	0.0732
5143/2	Princeton Landing	2.65	0.476	0.362	0.4395
517	Foot of Cracraft Tow Head	2.63	1.018	0.287	0.1142
518	Carolina Landing	2.63	1.181	0.565	0.2068
$519\frac{1}{2}$	1½ miles below Carolina Landing	2.63	1.763	0.568	0.1307
5201/2	2 miles above Pilcher Landing	2.65	0.309	0.300	0.5600
521%	Foot of Ashton Tow Head	2.65	0.404	0.377	0.5544
52316	Pittman Island Landing	2.65	0.246	0.173	0.3128
526	Foot of Pittman Island	2.65	0.429	0.357	0.4212
$526\frac{3}{4}$	Chute of Duncansby Tow Head	2.65	0.278	0.252	0.6212
527 1/4	Head of Duncansby Tow Head	2.65	0.255	0.249	0.7099
528 520	Foot of Duneanshy Tow Head	2.65	0.312	0.296	0.6477
5301/4	Wild Cat Tow Head	2.65	0.280	0.259	0.594
532	Wilson Point Landing	2.65	0.245	0.241	0.6870
$533\frac{1}{2}$	Head of Island No. 93	2.65	0.380	0.296	0.4440
536	1 mile above Baleshed Tow Head	2.65	0.031	0.401	0.4081
007 52714	14 mile below Baleshed Tow Head	2.65	0.484	0.463	0.5786
5381	Old Channel, back of Baleshed Tow Head	2.65	0.564	0.451	0.4230
$538\frac{3}{4}$	Old Channel, back of Baleshed Tow Head	2.63	1.616	0.486	0.1297
539A	Baleshed Landing	2.65	0.705	0.482	0.3341
99813	Head	2.65	0.287	0.268	0.6052
$539\frac{1}{4}$	Old Channel, foot of Baleshed Tow Head	2.65	0.292	0.276	0.6043
$539\frac{3}{4}$	Old Channel, head of Stack Island	2.65	0.212	0.180	0.5433
540	Old Channel	2.65	0.465	0.432	0.5711
040 % 540 1/ A	Old Channel 1/6 mile above Ben Lomond	2.00	1.700	0.001	0.1240
0.10/4.11	Landing	2.65	0.853	0.551	0.3410
$541\frac{1}{4}$	Old Channel, 1/2 mile above Ben Lomond	0.05	0.070	0.047	0, 2022
54112	Landing Ron Lowond Landing	2.65	0.252	0.247	0.0930
54334	2 miles below Lake Providence. La.	2.65	0.403	0.390	0.6320
54614	Head of Ajax Bar	2.65	0.408	0.392	0.6620
548	Foot of Ajax Bar	2.65	0.768	0.364	0.2039
$548\frac{1}{2}$	Foot of Ajax Bar	2.65	17.253	20.465	0.3041
549 54012	Opposite Point Lookout Landing	2.00	0.338	0.337	0.1330
551	Fitler. Miss.	2.63	1.589	0.638	0.1676
554	Hay Landing	2.65	0.534	0.512	0.6092
555	Head of Cottonwood Bar	2.60	4.979	0.680	0.0538
556	Shiloh Landing	2.65	0.341	0.273	0.4376
560 560	11% miles above Goodrich Landing	2.00	0.406	0.303	0.4728
5601/3	1 mile above Goodrich Landing	2.65	0.429	0.335	0.4346
$563\frac{12}{2}$	Dogtail Landing	2.65	0.524	0.480	0.4907
565	Salem Landing	2.63	1.400	0.559	0.1849
568	Willow Point Landing	2.00	1.066	0.390	0.2401
5691/2	1 mile above Chotard Landing	2.65	0.600	0.337	0.2945
57034	Chotard Landing	2.71	†	+	+
$572\frac{1}{2}$	Bellevue, Miss.	2.65	0.406	0.403	0.5655
$573\frac{1}{2}$	1 mile above Brunswick Landing	2.62	2.300	0.554	0.1021 0.7264
5751/6	1/2 mile below Brunswick Landing	2.69 2,66	17.832	20.484	0.2832
/ A	the second s				

*These data concern the same samples of bed material listed in Table 39. *See page 5 for discussion of these values. †Not computed for silt and clay samples. See Table 39 for size distribution.

TABLE 41—Continued

Physical Data and Various Constants of Material from Bed of Mississippi River*

NAME AND ADDRESS OF TAXABLE					
Miles Below Cairo	Locality	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
577	2 miles below Brunswick Landing	2.63	1.230	0.571	0.2182
578	I mile above Omega, La.	2.65	0.402	0.379	0.5623
520	Unlega, La, Foot of Island No. 109	2.05	0.444	0.357	0.4387
581	Omore Landing	2.00	0,493	0.408	0.5023
5813/	Moreney Landing	2.01	12.400	0.508	0.1273
583	Millikane Band Landing	2.00	6 685	0.308	0.0423
58316	1/4 mile below Millikens Bend Landing	2.62	3 164	0.590	0.0784
58614	15 mile above Cabin Teele Landing	2.63	1.149	0 443	0.1714
586 14	Cabin Teele Landing	2.65	0.752	0.504	0.3314
588	Foot of Forest Home Tow Head	2.62	7.614	0.810	0.0350
589	1 mile above Halpino Landing	2.65	0.414	0.390	0.6090
590	Halpino Landing	2.60	+	†	†
591	Paw Paw Landing	2.65	0.470	0.374	0.4467
593	Browns Point Landing	2.65	0.388	0.320	0.4718
595	Nebraska Landing	2.65	0.649	0.493	0.3769
595 14	Lower side of Browns Point	2.63	1.273	0.307	0.0984
5951/2	Youngs Point Landing	2.63	8.612	0.890	0.0325
595½A	Vounge Point Londing	2.00 2.64	2.072	0.200	0.0405
5053/4	Opposite Young Baint Landing	2.04	20.140	23.011 0.172	0.3303
5081/	14 mile below Young Point Landing	2.00	6 901	0.175	0.0203
50612	3/ miles below Youngs Point Landing	2.02	18 402	18 010	0.0344
5061%A	2 miles above Kings Point Landing	2.65	0.636	0.522	0.0722
59634	1% miles above Kings Point Landing	2 65	0.348	0 335	0 6294
597	1% miles below Youngs Point Landing	2.62	6.127	0.472	0.0233
597A	11% miles above Kings Point Landing	2.65	0.186	0.181	0.6887
5971/2	2 miles below Youngs Point Landing	2,63	1.168	0.748	0.3095
597 1/2 A	1 mile above Kings Point Landing	2.65	0.359	0.343	0.6105
598	1/2 mile above Kings Point Landing	2.65	0.250	0.235	0.6056
$598\frac{1}{4}$	2 miles above Delta Landing	2.62	3.659	0.721	0.0755
$598\frac{1}{2}$	1 ³ / ₄ miles above Delta Landing	2.63	1.452	0.508	0.1619
$598\frac{1}{2}A$	Kings Point Landing	2.65	0.239	0.210	0.5664
599	1 mile above Delta Landing	2.63	1.478	0.422	0.1215
599A	1/2 below Kings Point Landing	2.65	0.211	0.194	0.6388
5991/2	¹ / ₂ mile above Delta Landing	2.65	0.896	0.581	0.3385
5991/2A	1 mile below Kings Point Landing	2.65	0.402	0.386	0.5622
599%	14 miles below Kings Foint Landing	2.00	0.368	0.328	0.2993
6004	Opposite Dalta Landing	2.05	0.438	0.398	0.57%0
600A	14 mile below Delte Landing	2.00	0.277	0.961	0.0000
6013/5	1/2 mile above mouth of Vazoo River	$\frac{2.05}{2.65}$	0.263	0.251	0.6719
60134	Vicksburg, Miss	2.65	0.299	0.269	0.5907
6021	1/2 mile above Vicksburg bridge	2.65	0.190	0.173	0.5841
603	Vicksburg bridge	2.62	10.060	0.466	0.0108
$604\frac{3}{4}$	11/2 miles below Vicksburg bridge	2.65	0.565	0.505	0.5113
$605\frac{3}{4}$	1/2 mile above head of Racetrack Tow Head	2.65	0.258	0.251	0.6897
606A	Head of Racetrack Tow Head	2.65	0.233	0.235	0.7116
606	Head of Racetrack Tow Head	2.63	0.524	0.509	0.6486
$606\frac{1}{2}$	Head of Reid-Bedford Bend	2.65	0.248	0.246	0.711
606%	Kacetrack Tow Head Chute	2.00	0.379	0.303	0.6420
6007 1/2	Reastrack Tow Head Chute	2.00	0.213	0.198	0.0108
6091/	Racetrack Tow Head Chute	2.00	0.440	0.345	0 4007
60812	Foot of Reid-Bedford Bend	2.65	0.324	0.307	0.4674
600 22	Back of foot of Bacetrack Tow Head	2.65	0.268	0.258	0 6482
60914	Foot of Racetrack Tow Head	2.66	2 062	0.467	0.0866
610	16 mile below foot of Racetrack Tow Head	$\tilde{2}.65$	0.423	0.359	0.4889
611	Taylor Landing	2.65	0.377	0.358	0.6385
612	1 mile below Taylor Landing	2.63	1.059	0.543	0.2352
6121/4	11/2 miles above Diamond Point Cut-off	2.65	0.365	0.333	0.5285
613	Oak Bend Landing	2.65	0.422	0.400	0.6011
614	Dredge-Cut, Diamond Point Cut-off	2.65	0.226	0,235	0.6728
614A	Upper side of Dredge Cut, Diamond Point				0
	Cut-off	2.65	0.139	0.085	0.1587
615	1/2 mile below head of Diamond Point Cut-off	2.65	0.401	0.384	0.5633
617	1½ miles above Hodge Landing	2.65	0.432	0.393	0.4977
619	Upper side of Diamond Point	2.67	5.309	0.581	0.0308
620	Diamond Point	2.09	1 597	0.605	0 1870
020	raimyra Lake	2.00	0.164	0.095	0.5628
028	Torn Landing	2.00 9.65	0.104	0.473	0.3373
621	Logo Landing	2.65	0.318	0.295	0.6022
6314	1 mile above Burns Landing Palmura Lake	2.65	0.416	0.390	0,6171
633	Point Pleasant	2.65	0.299	0.194	0.3218

Ş

ţ

*These data concern the same samples of bed material listed in Table 39. *See page 5 for discussion of these values. †Not computed for silt and clay samples. See Table 39 for size distribution.

TABLE 41-Continued

Physical Data and Various Constants of Material from Bed of Mississippi River*

\$

 $\hat{s}_{i_{11}}^{02}$

					1
Miles	¥ •••	Specific	Mean Grain	Median Grain	Uniformity
Below	Locality	Gravity	Diameter	Diameter	Modulus M**
Cairo			mm≉≉	mm**	
		2822			
6334	Point Pleasant, Palmyra Lake	2.65	0.658	0.509	0.4409
635	Buckridge Landing	2.65	0.419	0.402	0.6360
638	Mouth of Big Black River	2.71	0 000	0 100	T 1010
639	Yucatan Bend	2.60	0.339	0.322	0.4848
640 642	Ship Bayou Landing	2.65	0.052 0.123	0.118	0.5018
643	1 mile below Ship Bayou Landing	2.70	+	Ť	†
647	1 mile below Hard Times Landing	2.68	1		+
648	Lower end of Yucatan Cut-off	2.65	0.417	0.392	0.5901
657	Head of Bondurant Tow Head	2.66	7.966	1.900	0.0382
659	Bruinsburg Landing	2.65	0.322	0.273	0.5510
659A	Bondurant Chute	2.65	0.406	0.378	0.5569
662	St. Joseph Upper Landing	2.00	0.044	0.417	0,2535
670	Upper end of Gilliam Chute	2.65	8,483	0.769	0.0269
671	Bieller Landing	2.65	0.352	0.323	0.5895
676	Ashland Landing	2.64	5.556	0.580	0.0372
683	1 ¹ / ₂ miles below L'Argent Landing	2.65	0.729	0.498	0.3038
687 680	1 mile below Lake St. John Landing	$\frac{2.05}{2.65}$	0.307	0.206	0.5269
693	Cowpen Point Landing	2.65	0.365	0.323	0.4949
696	Back of Giles Middle Ground Island	2.65	0.327	0.319	0.6488
701	Lower side of Cowpen Point	2.65	0.808	0.564	0.4062
708½	3 miles below Natchez, Miss.	$2.60 \\ 2.65$	0.831	0.301	0.2808
709	Carthage Point	2.65	0.229	0.221	0.6335
71034	Head of Natchez Island Tow Head	2.66	2.997	0.580	0.0809
711	Natchez Island Tow Head Chute	2.65	0.249	0.239	0.6074
71214	Natchez Island Tow Head	2.66	2,439	0.465	0.0790
7124	Natchez Island Chute	$\frac{2.66}{2.66}$	0.225	0.323	0.6485
715%	Warnicott Landing	2.65	0.284	0.254	0.5277
$716\frac{1}{4}$	Warnicott Landing	2.66	2.836	0.438	0.059
$718\frac{1}{2}$	Destruction Landing	2.65	0.329	0.300	0.5863
$720 \\ 729$	Esperance Landing	2.00	0.362	0.373	0.4045
7231/	1/4 mile below upper end of Glasscock Cut-off	$\frac{2}{2}.65$	0.199	0.160	0.4338
$725\frac{1}{2}$	1/2 mile below Briar Landing	2.65	0.596	0.482	0.4587
$728\frac{1}{2}$	Deerpark, La.	2.65	0.148	0.141	0.6149
733	2 miles above Fairview Landing	2.00	0.492	0.343	0.6086
740	1 mile below Gaines Landing	2.65	0.392	0.323	0.4784
742	Eureka Landing	2.65	0.796	0.562	0.3704
745	Bougere Landing	2.65	0.308	0.305	0.6280
749	Artonish Landing	2.65	0.794	0.552	0.5809
7561/3	1½ miles below Black Hawk Landing	$\tilde{2.65}$	0.152	0.066	0.1218
757	2 miles below Black Hawk Landing	2.69	†	+	†
$758\frac{1}{2}$	1½ miles above Stamps Landing	2.65	0.505	0.489	0.5076
759½	I mile above Stamps Landing	2.05	0.269	0.259	0.0877
7601/4	Stamps Landing	2.65	0.200	0.191	0.6757
7601/2	Knox Landing	2.65	0.411	0.384	0.5880
$760\frac{3}{4}$	Knox Landing	2.62	1.442	0.549	0.1783
7611/2	1 mile above Point Breeze	2.65	0.182	0.173 0.124	0.6529
765	I mile above Tarbert Landing	2.65	0.918	0.508	0.2704
767	Tarbert Landing	$\tilde{2.65}$	0.320	0.305	0.6128
$767\frac{1}{2}$	Tarbert Landing	2.65	5.984	0.562	0.0354
768	1 mile below Tarbert Landing	2.65	0.148	0.154	0.5903
7701/	1 mile above mouth of Old River	2.65	0.985	0.369	0.1550
771	1/4 mile above mouth of Old River	2.65	0.516	0.438	0.4720
7711/2	Angola Landing	2.63	1.107	0.459	0.1575
7731/2	2 miles below mouth of Old River	2.65	0.181	0.144	0.4540
78582	Tucker Landing Head of Tunica Island	2.66	$2.834 \\ 0.497$	0.507	0.0694
786%	1 mile below head of Tunica Island	2.65 2.65	0.379	0.260	0.3671
787	11/2 miles below head of Tunica Island	2.65	0.662	0.374	0.2687
800	Boles Point	2.65	0.226	0.228	0.7016
807	Bayou Sara, La.	2.65	0.433	0.406	0.4871
814	1 mile above Grand Bay Landing	2.65	0.257	0.249	0.7077
820½ 8351/	Mulatto Bend Landing	2.65	0.230	0.234	0.5271
838	1 mile below Scott Bluff, La.	2.69	†	†	+

*These data concern the same samples of bed material listed in Table 39. *See page 5 for discussion of these values. †Not computed for silt and clay samples. See Table 39 for size distribution.

TABLE 41-Continued

Miles Below Cairo	Locality	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
$840\frac{1}{2}$	2 miles above Baton Rouge, La.	2.65	0.302	0.285	0.6430
842	Baton Rouge, La.	2.65	0.422	0.390	0.5655
$847\frac{1}{2}$	Brushly Landing	2.65	0.314	0.312	0.6556
860	3 miles above Plaquemine, La.	2.65	0.222	0.220	0.6752
861	2 miles above Plaquemine, La.	2.65	0.265	0.257	0.7064
807 /2	Claibana Landing	2.00	0.209	0.199	0.0441
806	Donaldeonville La	2.00	0.522	0.312	0.6271
070	2 miles above College Point	2.00	0.299	0.200	0.0040
917	2 miles below College Point	2.65	0.215	0 211	0.6667
924	Gramerey, La.	2.65	0.213	0.204	0.6665
937	Bonnet Čarre' Point	2.65	0.194	0.195	0.5861
$967\frac{1}{2}$	New Orleans, La.	2.65	0.219	0.210	0.6653
$968\frac{1}{2}$	Opposite Westwego, La.	2.65	0.169	0.171	0.7273
$972\frac{1}{4}$	New Orleans Harbor, opposite Harvey, La.	2.66	0.318	0.328	0.6872
977	Just above Industrial Canal	2.63	0.009	0.001	t
97912	Just above Quarantine Station	2.66	0.241	0.238	0.6394
983	Meraux, La.	2.63	0.234	0.237	0.7153
980%	Just below Lake Borgne Canal	2.66	0.168	0.188	T
990%	Brathwaite, La.	2.64	0.271	0.265	0.6156
992%	Balla Chassa La	2.10	0.019	0.001	0 6645
0073/	116 miles below Congession Lo	2.00	0.220	0.220	0.0045
0001	Bertrandville La	2.65	0.179	0.174	0 6563
10011%	Lower end Jesuits Bend	2.69	0.005	0.001	1 0.0000
1004	Belair, La.	2.65	0.211	0.204	0.6729
1007	2 miles below Belair, La,	2.64	0.188	0.179	0.6576
1010	Poverty Point	2.65	0.110	0.115	0.4665
$1014\frac{1}{4}$	Deer Range, La.	2.65	0.182	0.178	0.6888
$1017\frac{1}{4}$	Pointe Celeste	2.64	0.173	0.171	0.6938
1019	Woodland, La.	2.66	0.155	0.156	0.6939
$1021\frac{1}{4}$	Pointe a la Hache, La.	2.66	0.206	0.202	0.6328
10231/2	Bohemia, La.	2.65	0.193	0.185	0.6551
1027 1/4	Happy Jack, La.	2.62	0.104	0,171 0,172	0.5187
1030	1 mile below Home Please Ja	2.07	0.182	0.170	0.6741
1033	I mile below nome Place, La.	2.00	0.228	0.234	0.0752
10403/	Empire I.	2.71	0.070	0.004	0 7038
104074	Burge Lo	2.00	0.102	0 187	0.6813
104716	Triumph La	2.62	0.190	0.177	0.6017
1050	Fort Jackson, La	2.70	0.156	0.152	0.6541
10521/6	Boothville, La.	2.64	0.158	0.158	0.6680
1057	11/2 miles above Venice, La.	2.72	0.086	0.093	+
$1058\frac{1}{4}$	Venice, La.	2.69	0.008	0.002	†
1060	Just below The Jump	2.66	0.004	0.001	†
$1062\frac{1}{4}$	3½ miles above Cubits Gap	2.66	0.179	0.173	0.6439
1064	2¼ miles above Cubits Gap	2.69	0.047	0.006	1
$1065\frac{1}{2}$	1 mile above Cubits Gap	2.67	0.160	0.161	0.6860
1066	Upper side Cubits Gap	2.64	0.161	0.165	0.7182
1066%	Lower side Cubits Gap	2.03	0.052	0.021	1
1067 %	Mile above Head of Passes	2.00	0.045	0.003	
106916	Hand of Pageage	2.00	0.182	0.160	0 4995
100072	ANONA OF A BOODS	2.00	, 0,102	0.100	
	South Pas	s			
10000				0.001	
1070%	1 mile below Head of Passes	2.63	0.003	0.001	I
1071	14 miles below Head of Passes	2.72	0.020	0.001	0 5000
1072	24 miles below Head of Passes	2.66	0,137	0.134 0.117	0.5900
1072%	5 Innies below riead of rasses	2.09	0.112	0.162	0 6703
1073 /2	4 miles above Port Eade Le	2.00	0.018	0.002	1.0100
1070	2 miles above Port Eads, La.	2.66	0.128	0.126	0 6986
108014	1/2 mile above Port Eads, La	2.65	0.135	0.129	0.6683
1082	1 mile below Port Eads, La.	2.67	0.027	0.006	+
108334	Gulf of Mexico, ½ mile from jetties	2.69	0,030	0.024	+
108414	Gulf of Mexico, 1 mile from jetties	2.76	0.054	0.007	Ť
1085	Gulf of Mexico, at whistle buoy, 13/4 miles				
	from jetties	2.68	0.020	0.003	†
	Sauth Bass	Pon			
	Bouth Pass	RD211.			
$1083\frac{1}{6}$	In Gulf on bar, 1/2 mile southwest of jetties.	2.67	0,133	0.131	0.599
$1083\frac{3}{4}$	In Gulf on bar, 1/4 mile west of jetties	2.67	0.119	0.121	0.715

Physical Data and Various Constants of Material from Bed of Mississippi River*

4

з

5

*These data concern the same samples of bed material listed in Table 39. *See page 5 for discussion of these values. Not computed for silt and clay samples. See Table 39 for size distribution.

TABLE 41—Continued

Physical Data and Various Constants of Material from Bed of Mississippi River*

\$

5

Å:

Miles Below Cairo	Locality	Specific Gravity	Mean Grain Diameter mm **	Median Grain Diameter mm **	Uniformity Modulus M **
	Southwest	Pass			
$\begin{array}{c} 1069\frac{1}{2}\\ 1070\frac{1}{4}\\ 1070\frac{3}{4}\\ 1073\\ 1076\frac{1}{2}\\ 1083\frac{1}{2}\\ 1085\frac{3}{4}\\ 1088\frac{3}{2}\\ 1088\frac{3}{4}\\ 10901\\ 1091\frac{3}{4} \end{array}$	Head of Passes. ¹ / ₂ mile below Head of Passes. 3 miles below Head of Passes. 2 ¹ / ₂ miles below Joseph Bayou. 3 miles above Burrwood, La. 1 ¹ / ₂ miles above Burrwood, La. Burrwood, La. ³ / ₄ mile below Burrwood, La. ³ / ₄ mile below Burrwood, La. ¹ / ₄ miles above end of jetties. Mouth of river at end of jetties. In Gulf of Mexico, 1 mile from jetties. In Gulf, near whistle buoy, 1 ³ / ₄ miles from jetties.	$\left \begin{array}{c} 2.66\\ 2.63\\ 2.68\\ 2.78\\ 2.65\\ 2.65\\ 2.65\\ 2.69\\ 2.72\\ 2.72\\ 2.74\\ 2.60\\ 2.73\\ 2.64\\ \end{array}\right $	$ \begin{smallmatrix} 0.166\\ 0.040\\ 0.122\\ 0.041\\ 0.004\\ 0.171\\ 0.157\\ 0.093\\ 0.052\\ 0.045\\ 0.129\\ 0.038\\ 0.038\\ 0.057\\ \end{smallmatrix} $	$\begin{array}{c} 0.160\\ 0.006\\ 0.124\\ 0.002\\ 0.001\\ 0.172\\ 0.163\\ 0.104\\ 0.004\\ 0.004\\ 0.117\\ 0.041\\ 0.024 \end{array}$	$\left \begin{array}{c} 0.604\\ +\\ 0.566\\ +\\ 0.721\\ +\\ +\\ +\\ +\\ +\\ 0.505\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\ +\\$
	Southwest P	ass Bar			
$1090\frac{1}{2}$	In Gulf on bar, 1/2 mile southwest of jetties_	2.68	0.086	0.068	1 1
	Pass a L'	Outre			
$1069\frac{1}{2}$ $1069\frac{1}{2}$ $1069\frac{1}{2}$	1/2 mile below head 1 mile below head 1 1/2 miles below head	$2.64 \\ 2.67 \\ 2.65$	$\begin{array}{c} 0.135 \\ 0.168 \\ 0.188 \end{array}$	$\begin{array}{c} 0.130 \\ 0.160 \\ 0.180 \end{array}$	$\begin{array}{c c} 0.635 \\ 0.547 \\ 0.517 \end{array}$
	Cubits 6	ар			
$1066\frac{14}{1066\frac{12}{1066\frac{12}{1066\frac{12}{1066\frac{12}{1066\frac{12}{1066\frac{34}{1066\frac{34}{1066\frac{34}{1066\frac{34}{1066\frac{12}{106\frac{12}{1066\frac$	1/4 mile east of east bank, Mississippi River. Head of Main Pass. Head of Octave Pass. From head of island between Octave & Brant Passes Head of Brant Pass. Head of Raphael Pass. Head of Raphael Pass. ½ mile east of light (lower side of gap). 1/2 mile east of east bank, Mississippi River (center of gap).	$\begin{array}{c} 2.59\\ 2.67\\ 2.67\\ 2.64\\ 2.65\\ 2.64\\ 2.62\\ 2.62\\ 2.66\end{array}$	$ \begin{array}{c} 0.022\\ 0.010\\ 0.048\\ 0.038\\ 0.134\\ 0.130\\ 0.033\\ 0.141\\ \end{array} $	$\begin{array}{c} 0.001 \\ 0.002 \\ 0.014 \\ 0.024 \\ 0.131 \\ 0.134 \\ 0.004 \\ 0.142 \end{array}$	$\begin{vmatrix} & \uparrow \\ & \uparrow \\ & \uparrow \\ & 0.586 \\ & 0.533 \\ & \uparrow \\ & 0.556 \end{vmatrix}$
	The Ju	mp			
$1059\frac{1}{10}$	34 mile below head 34 mile below head Bantista Callad	2.65 2.71	$\begin{array}{c} 0.317 \\ 0.049 \end{array}$	$\begin{array}{c} 0.025\\ 0.004\end{array}$	*
$1058\frac{1}{4}$ $1058\frac{1}{4}$	At head	2.62 2.48	$0.028 \\ 0.009$	$0.010 \\ 0.001$	† †
	*These data concern the same samples of bed	material	listed in Tal	ole 39.	

*See page 5 for discussion of these values. *Not computed for silt and clay samples. See Table 39 for size distribution.

٩.

Physical Data and Various Constants of Material from Bed of Tributary and Outlet Rivers*

\$

書

ġ.

 f_{2}^{i}

Miles from Cairo	$\operatorname{Locality}$	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
	Ohio Riv	er.			
$+1 \\ -1$	Above Cairo Below Cairo	$\begin{array}{c} 2.62\\ 2.60\end{array}$	$\substack{12.328\\4.634}$	$\substack{11.788\\3.957}$	$\substack{0.2693\\0.2427}$
Miles above Mouth of Black River	Locality	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
	Black Riv	ver.			
	Delhoste Landing Acme, La. Acme Landing 1 mile above Acme Landing 1 mile below Palmetto Landing	$2.69 \\ 2.67 \\ 2.72 \\ 2.68 \\ 2.69 $	0.102	† † 0.065 †	0.1913
Miles above Junc- tion of Old and Miss. Rivers	Locality	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
	Red Riv	er.			
$\begin{array}{c} 9\\ 10\\ 12\\ 15^{1}/_{2}\\ 20\\ 23\\ 23A\\ 25^{1}/_{2}\\ 29\\ 33^{1}/_{2}\\ 34^{1}/_{2}\\ 35^{1}/_{2}\\ 36^{1}/_{$	Naples, La. Mouth Upper Old River. 2 miles above Upper Old River. 3 miles below Natchitoches Bayou. 1 mile above Natchitoches Bayou. Bayou Cocodrie (East Bank Red River). Bayou Cocodrie (East Bank Red River). Bayou Cocodrie . 2½ mile above Bayou Cocodrie . 1 mile below Five Mile Bayou ½ mile above Five Mile Bayou 1 mile below Five Mile Bayou 1 mile below mouth of Black River . 1 mile above mouth of Black River . 2 mile above mouth of Black River . 1 mile above mouth of Black River . 2 Locality	$\begin{array}{c} 2.77\\ 2.69\\ 2.69\\ 2.70\\ 2.68\\ 2.69\\ 2.70\\ 2.66\\ 2.66\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 3.65\\ \end{array}$	† † † † † † 0.059 † 0.154 0.061 0.107 0.174 0.284 0.094 Mean Grain Diameter mm ^{**}	† † † † 0.046 0.192 0.065 0.109 0.168 0.107 0.254 0.102 Median Grain Diameter mm ^{**}	† † † † † † 0.2404 † 0.1875 0.3727 0.5858 0.5858 0.5836 0.4913 0.5196 0.4708 Uniformity Modulus M**
	Old Riv	er.			
$ \begin{array}{r} 14 \\ 12 \\ 14 \\ 14 \\ 134 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 12 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 7 \\ $	Opposite Angola Landing Opposite Angola Landing '4 mile east of Sugar House Chute '5 mile east of Sugar House Chute '4 mile east of Sugar House Chute '5 mile west of Sugar House Chute '4 mile west of T. & P. Railroad bridge '1/2 miles west of T. & P. Railroad bridge '2/2 miles east of Barbre Landing '2/2 miles east of Barbre Landing '2/2 mile west of Barbre Landing	$\left \begin{array}{c} 2.65\\ 2.65\\ 2.78\\ 2.63\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.70\\ 2.65\\ 2.70\\ 2.65\end{array}\right $	$\begin{array}{c} 0.757\\ 0.456\\ \dagger\\ 0.374\\ 0.332\\ 0.266\\ 0.462\\ 0.530\\ 0.159\\ 0.218\\ \dagger\\ 0.232\\ \end{array}$	$ \begin{array}{c} 0.387 \\ 0.449 \\ \dagger \\ 0.362 \\ 0.295 \\ 0.250 \\ 0.351 \\ 0.490 \\ 0.164 \\ 0.199 \\ \dagger \\ 0.239 \end{array} $	$ \begin{array}{c} 0.2571\\ 0.6525\\ +\\ 0.6717\\ 0.5781\\ 0.6001\\ 0.3198\\ 0.4600\\ 0.3433\\ 0.5655\\ +\\ +\\ 0.7014\\ \end{array} $

*These data concern the same samples of bed material listed in Table 40. **See page 5 for discussion of these values. †Not computed for silt and clay samples. See Table 40 for size distribution.

 $\rm Physical \ Data$ and Various Constants of Material from Bed of Tributary and Outlet Rivers*

85

Miles below head of Atcha- falaya	Locality	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
River					
	Atchafalaya	River.			
	14 No. L. Joseph Denkov, Tan Norm	0.05	0.570	0.974	0.0075
2 2	2 miles below Barbre Landing	$\frac{2.05}{2.77}$	0.576	0.374	0.3215
ĩ	2 miles above Simmesport, La.	2.71	+	1	+
$\frac{31}{2}$	1½ miles above Simmesport, La.	2.65	0.232	0.238	0.321
01/2 61/2	Simmesport, La.	2.65 2.65	0.085	0.181	0.0545
8 2	1½ miles above Odenburg, La.	2.65	0.298	0.280	0.4590
$9\frac{1}{2}$	Odenburg, La	2.65	0.395	0.350	0.3136
10	¹ / ₂ mile below Odenburg, La.	2.00	0.374	0.380	0.4977
13 12 74	McCrea Landing	2.65	0.299	0.297	0.5645
151/2	Woodside, La.	2.65	0.364	0.358	0.2901
$16\frac{3}{4}$	Burlong Landing	2.68	1	1	1
17 1/2 1834	1 mile above flicks Landing	2.69 2.65	0.304	0.298	0 5589
$20\frac{4}{2}$	Bayou Current	2.72	†	+	1
2234	11/2 miles above Baberton Landing	2.69	t	t	t (
$\frac{23}{9412}$	154 miles above Baberton Landing	2.78 2.65	7 773	6 072	0 0894
2434	Baberton Landing	2.65	0.486	0.450	0.5203
$27\frac{1}{2}$	1½ miles below Elba, La	2.65	0.419	0.390	0.3170
29	1 mile above Melville, La.	2.76	Ť	Ţ	1
3214 A	2 miles below Melville, La.	2.65 2.65	0.338	0.221	0.1255
33	2½ miles below Melville, La.	2.69	†	Ť	+
331/2	3 miles below Melville, La.	2.65	1.159	0.868	0.1914
$\frac{30}{2}$	5 miles above Krotz Springs, La.	$2.00 \\ 2.72$	0.348	0.509	0.2004
39	3 miles above Krotz Springs, La.	2.55	0.247	0.268	0.1315
$39\frac{1}{2}$	2½ miles above Krotz Springs, La.	2.72	1	t t	1
41	1/2 mile above highway bridge	$\frac{2.09}{2.70}$	+		1
4274	3 miles below Krotz Springs, La.	2.71	+	÷	Ť
$48\frac{3}{4}$	1 mile above Bayou Courtableau	2.71	t t	1	t
$50\frac{1}{2}$	Bayou Courtableau	2.65	0.251	0.267	0.2596
56 - 56 - 56 - 56 - 56 - 56 - 56 - 56 -	1 mile above Alabama Bayou	$2.65 \\ 2.65$	0.301	0.287	0.5522
$58\frac{1}{2}$	3 miles above Atchafalaya, La.	2.70	†	+	+
6034	¹ / ₂ mile above Atchafalaya, La.	2.71	0 595	0 102	0 2044
03 24 64 14	16 mile below head Butte La Rose Cut	$\frac{2.05}{2.65}$	0.484	0.511	0.3546
65	2 miles above Butte La Rose, La.	2.65	0.485	0.476	0.6394
$66\frac{1}{4}$	1 mile above Butte La Rose, La.	2.69	t	t	1
$67 \frac{1}{2}$	$\frac{1}{2}$ mile below butte La Rose, La,	2.70	1	i t	I T
	Little Atchafala	ya River.			
68	14 mile below head Little Atchafalaya River.	2.70	+	+	1 +
69	1 mile below head Little Atchafalaya River.	2.68	÷	÷	+
$70\frac{1}{2}$	³ 4 mile above lower end Little Atchafalaya	0.05	0.487	0.470	0 5700
1	Alver.	2.00	0.407	0.472	0.5729
	Upper Grand	River.			
683/	3/ mile above lower end Butte La Rose Cut_	2.69	+	†	1 1
6914	14 mile above lower end of Butte La Rose		,	,	
2014	Cut	2.65	0.279	0.259	0.6140
10%	74 mile below lower end of butte La Rose Cut	2.65	1.519	0.552	0.1694
72	1/4 mile below Bayou La Rompe	2.70	1.01.0	t 1	1 T
73	1½ miles below Bayou La Rompe	2.65	0.297	0.285	0.6397
761/	2 mile above Big Tepsas Bayon	2.65	0.302	0.300 0.222	0.6100
79	1/2 mile above Little Tensas Bayou	2.65	0.192	0.185	0.6498
82	2½ miles below Little Tensas Bayou	2.65	0.155	0.158	0.6648
85	1 mile above Bayou Maringouin	2.65	0.127 0.155	0.127	0.3470
88%	316 miles above Bayou Maringouni	2.00	0.155	0.100	0.0810
931/	1 mile above Bayou Plaquemine	$\tilde{2.67}$	+	+	+
94	1/2 mile above Bayou Plaquemine	2 70	+	+	1 +

*These data concern the same samples of bed material listed in Table 40. **See page 5 for discussion of values. †Not computed for silt and clay samples. See Table 40 for size distribution.

Physical Data and Various Constants of Material from Bed of Tributary and Outlet Rivers*

Miles below head of Atcha- falaya River	$\operatorname{Locality}$	Specific Gravity	Mean Grain Diameter mm**	Median Grain Diameter mm**	Uniformity Modulus M**
	I	D?			
98 104	2 miles above Bayou Sorrel 4 miles below Bayou Sorrel	2.65 2.68	0.142	0.151	0.2167
	Atchafalava	Rivor			
	(Lower Grand Rig	or Route)			
$111118132\frac{1}{2}139\frac{1}{2}141143147\frac{1}{2}$	Chopin Chute Bay Natchez Bayou Long Flat Lake Berwick Bay	$\left \begin{array}{c}2.71\\2.67\\2.73\\2.42\dagger\dagger\\2.65\\2.60\\2.68\end{array}\right $	<u>↑</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u>	┿╺┾╸┿╸┿╸┿╸	
	(Bayou La Rompe, Lake Chicot,	and Gran	d Lake Rou	te)	
$\begin{array}{c} 71\\ 72\\ 72 \\ 73 \\ 4\\ 74 \\ 76 \\ 76 \\ 79 \\ 2\\ 79 \\ 4\\ 82\\ 86\\ 88\\ 89\\ 90 \\ 34 \end{array}$	 ¼ mile below head of Bayou La Rompe Bayou La Rompe, ½ mile above Rycade Rycade Bayou La Rompe, 1 mile above Lake Long Bayou La Rompe, ½ mile above L'Embarras Bayou La Rompe, ½ mile above Big Tensas Bayou La Rompe, ½ mile above Big Tensas Bayou La Rompe, foot of Nigger Chute Bayou La Rompe, foot of Splice Island Cut- off Chute Lake Mongoulois, 1 mile above Bayou Chene Big Bayou Chene Upper end of Lake Chicot Middle of Lake Chicot. Middle of Lake Chicot. 	$\begin{array}{c} 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.65\\ 2.61\\ 2.61\\ 12.44\\ 11\\ 2.41\\ 11\\ 2.61\\ 11\\ 12.45\\ 11\\ 12.45\\ 11\\ 12.45\\ 11\\ 12.45\\ 11\\ 12.45\\ 11\\ 12.45\\ 11\\ 12.45\\ 11\\ 12.45\\ 11\\ 12.45\\ 12.55\\$	$ \begin{smallmatrix} 0.354 \\ 0.354 \\ 1.083 \\ 0.413 \\ 0.397 \\ 0.382 \\ 0.258 \\ 0.258 \\ 0.262 \\ 0.262 \\ 0.217 \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ $	$ \begin{array}{c} 0.325\\ 0.337\\ 0.413\\ 0.383\\ 0.383\\ 0.368\\ 0.368\\ 0.249\\ 0.273\\ 0.248\\ 0.257\\ 0.215\\ \dagger\\ \dagger\\ \dagger\\ \dagger\\ \end{array} $	$ \begin{array}{c} 0.4851\\ 0.5832\\ 0.1680\\ 0.5771\\ 0.6088\\ 0.6363\\ 0.6072\\ 0.6493\\ 0.6604\\ 0.6157\\ 0.6489\\ 0.6739\\ 0.739\\ 0.739\\ 1\\ 1\\ 1\\ 1\\ \end{array} $
$92\frac{34}{95}$ 98 99 $\frac{1}{2}$	Keel Boat Pass. Grand Lake 1½ miles below Keel Boat Pass. Grand Lake at Pigeon Point. Grand Lake, 1½ miles above Big Pigeon Bayou	2.62^{++} 2.70 2.69 2.70	+++++++++++++++++++++++++++++++++++++++	† † †	+ + +
$104 \\ 107\frac{1}{2} \\ 110\frac{1}{2} \\ 114 \\ 119 \\ 119 \\ 104 \\ 119 \\ 104 \\ 10$	Grand Lake, 3 miles below Big Pigeon Bayou Grand Lake, opposite Blue Point Grand Lake, ½ mile above Cypress Island Six Mile Lake Six Mile Lake at lower end Riverside Pass	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+++++++++++++++++++++++++++++++++++++++		a to the state of the state
	(Bayou I. Embarras, Lake Fausse)	Point, and	1 Grand La	ke Koute)	
$\frac{75\frac{1}{2}}{76}$	Bayou L'Embarras, ½ mile below Bayou La Rompe Bayou L'Embarras, 1 mile below Bayou La	2.65	0.435	0.429	0.6278
${}^{82}_{83}_{84\frac{1}{2}}_{86}$	Rompe. Lake Rond at Bayou Crocodile. Lake Rond at Bayou Grand Gueule. Lake Rond, 2 miles above Lake Fausse Point Grand Bayou, 1/4 mile above Lake Fausse	$2.65 \\ 2.65 \\ 2.69 \\ 2.65 \\ 2.65 $	$0.401 \\ 0.302 \\ \dagger \\ 0.253$	$0.385 \\ 0.297 \\ \dagger \\ 0.243 \\ 0.243$	$0.6509 \\ 0.6437 \\ + 0.6528$
$\frac{87\frac{1}{2}}{90}$	Point Lake Fausse Point at Head Lake Fausse Point at Head of Bird Island	2.6211	† †	Ť	1 †
931⁄2	Lake Fausse Point, ½ mile below foot of Bird Island Chute	2.65	0.151	0.155	0.5647
$95\frac{1}{2}$ 98 99 103 105 $\frac{1}{6}$	Lake Fausse Point, 3½ miles above Fisher Island Lake Fausse Point, 1 mile above Little Pass In Little Pass Grand Lake, 0 opposite Taylor Point Grand Lake, 1 mile above Myette Point	2.722.48772.692.62772.64	+ + +	* * *	- ter - ter
107	Grand Lake, 1 mile east of Myette Point	2.51	1 +	1	1

4

×

ĝ.

12

*These data concern the same samples of bed material listed in Table 40. **See page 5 for discussion of values. †Not computed for silt and clay samples. See Table 40 for size distribution. ††Considerable organic content.

100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100